network_conf.py 2.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
neural network for word2vec
"""

from __future__ import print_function

Q
Qiao Longfei 已提交
20
import math
21
import numpy as np
Q
Qiao Longfei 已提交
22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
import paddle.fluid as fluid

def skip_gram_word2vec(dict_size, word_frequencys, embedding_size):
    def nce_layer(input, label, embedding_size, num_total_classes, num_neg_samples, sampler, custom_dist, sample_weight):
        # convert word_frequencys to tensor
        nid_freq_arr = np.array(word_frequencys).astype('float32')
        nid_freq_var = fluid.layers.assign(input=nid_freq_arr)

        w_param_name = "nce_w"
        b_param_name = "nce_b"
        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, embedding_size], dtype='float32', name=w_param_name)
        b_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 1], dtype='float32', name=b_param_name)

        cost = fluid.layers.nce(
            input=input,
            label=label,
            num_total_classes=num_total_classes,
            sampler=sampler,
            custom_dist=nid_freq_var,
            sample_weight = sample_weight,
            param_attr=fluid.ParamAttr(name=w_param_name),
            bias_attr=fluid.ParamAttr(name=b_param_name),
            num_neg_samples=num_neg_samples)

        return cost
Q
Qiao Longfei 已提交
50 51

    input_word = fluid.layers.data(name="input_word", shape=[1], dtype='int64')
52 53
    predict_word = fluid.layers.data(name='predict_word', shape=[1], dtype='int64')
    data_list = [input_word, predict_word]
Q
Qiao Longfei 已提交
54 55 56 57

    emb = fluid.layers.embedding(
        input=input_word,
        size=[dict_size, embedding_size],
58
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(scale=1 / math.sqrt(dict_size))))
Q
Qiao Longfei 已提交
59

60
    cost = nce_layer(emb, predict_word, embedding_size, dict_size, 5, "custom_dist", word_frequencys, None)
Q
Qiao Longfei 已提交
61 62 63
    avg_cost = fluid.layers.reduce_mean(cost)

    return avg_cost, data_list