network.py 7.4 KB
Newer Older
H
hetianjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

H
hetianjian 已提交
15 16 17 18 19 20 21
import paddle
import math
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers


H
hutuxian 已提交
22
def network(items_num, hidden_size, step):
H
hetianjian 已提交
23 24 25 26
    stdv = 1.0 / math.sqrt(hidden_size)

    items = layers.data(
        name="items",
H
hutuxian 已提交
27 28
        shape=[1, 1],
        dtype="int64") #[batch_size, uniq_max, 1]
H
hetianjian 已提交
29 30
    seq_index = layers.data(
        name="seq_index",
H
hutuxian 已提交
31 32
        shape=[1],
        dtype="int32") #[batch_size, seq_max]
H
hetianjian 已提交
33 34
    last_index = layers.data(
        name="last_index",
H
hutuxian 已提交
35 36
        shape=[1],
        dtype="int32") #[batch_size, 1]
H
hetianjian 已提交
37 38
    adj_in = layers.data(
        name="adj_in",
H
hutuxian 已提交
39 40
        shape=[1,1],
        dtype="float32") #[batch_size, seq_max, seq_max]
H
hetianjian 已提交
41 42
    adj_out = layers.data(
        name="adj_out",
H
hutuxian 已提交
43 44
        shape=[1,1],
        dtype="float32") #[batch_size, seq_max, seq_max]
H
hetianjian 已提交
45 46
    mask = layers.data(
        name="mask",
H
hutuxian 已提交
47 48
        shape=[1, 1],
        dtype="float32") #[batch_size, seq_max, 1]
H
hetianjian 已提交
49 50
    label = layers.data(
        name="label",
H
hutuxian 已提交
51 52
        shape=[1],
        dtype="int64") #[batch_size, 1]
H
hetianjian 已提交
53

54 55 56 57 58 59
    datas = [items, seq_index, last_index, adj_in, adj_out, mask, label]
    py_reader = fluid.layers.create_py_reader_by_data(
                    capacity=256, feed_list=datas, name='py_reader', use_double_buffer=True)
    feed_datas = fluid.layers.read_file(py_reader)
    items, seq_index, last_index, adj_in, adj_out, mask, label = feed_datas

H
hetianjian 已提交
60 61 62 63 64 65 66
    items_emb = layers.embedding(
        input=items,
        param_attr=fluid.ParamAttr(
            name="emb",
            initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)),
        size=[items_num, hidden_size])  #[batch_size, uniq_max, h]
H
hutuxian 已提交
67
    items_emb_shape = layers.shape(items_emb)
H
hetianjian 已提交
68 69 70 71

    pre_state = items_emb
    for i in range(step):
        pre_state = layers.reshape(
H
hutuxian 已提交
72
            x=pre_state, shape=[-1, 1, hidden_size], actual_shape=items_emb_shape)
H
hetianjian 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
        state_in = layers.fc(
            input=pre_state,
            name="state_in",
            size=hidden_size,
            act=None,
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)),
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)))  #[batch_size, uniq_max, h]
        state_out = layers.fc(
            input=pre_state,
            name="state_out",
            size=hidden_size,
            act=None,
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)),
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)))  #[batch_size, uniq_max, h]

H
hetianjian 已提交
94 95
        state_adj_in = layers.matmul(adj_in, state_in)  #[batch_size, uniq_max, h]
        state_adj_out = layers.matmul(adj_out, state_out)   #[batch_size, uniq_max, h]
H
hetianjian 已提交
96 97 98 99

        gru_input = layers.concat([state_adj_in, state_adj_out], axis=2)

        gru_input = layers.reshape(x=gru_input, shape=[-1, hidden_size * 2])
H
hetianjian 已提交
100 101 102 103 104
        gru_fc = layers.fc(
            input=gru_input,
            name="gru_fc",
            size=3 * hidden_size,
            bias_attr=False)
H
hetianjian 已提交
105 106 107 108 109 110
        pre_state, _, _ = fluid.layers.gru_unit(
            input=gru_fc,
            hidden=layers.reshape(
                x=pre_state, shape=[-1, hidden_size]),
            size=3 * hidden_size)

H
hutuxian 已提交
111 112 113 114 115 116
    final_state = pre_state #[batch_size * uniq_max, h]

    seq_origin_shape = layers.assign(np.array([0,0,hidden_size-1]).astype("int32"))
    seq_origin_shape += layers.shape(layers.unsqueeze(seq_index,[2])) #value: [batch_size, seq_max, h]
    seq_origin_shape.stop_gradient = True

H
hetianjian 已提交
117
    seq_index = layers.reshape(seq_index, shape=[-1])
H
hutuxian 已提交
118
    seq = layers.gather(final_state, seq_index)  #[batch_size * seq_max, h]
H
hetianjian 已提交
119 120 121
    last = layers.gather(final_state, last_index)  #[batch_size, h]

    seq = layers.reshape(
H
hutuxian 已提交
122
        seq, shape=[-1, 1, hidden_size], actual_shape=seq_origin_shape)  #[batch_size, seq_max, h]
H
hetianjian 已提交
123
    last = layers.reshape(
H
hutuxian 已提交
124
        last, shape=[-1, hidden_size])  #[batch_size, h]
H
hetianjian 已提交
125 126 127 128 129 130 131 132

    seq_fc = layers.fc(
        input=seq,
        name="seq_fc",
        size=hidden_size,
        bias_attr=False,
        act=None,
        num_flatten_dims=2,
H
hetianjian 已提交
133 134
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
H
hutuxian 已提交
135
            low=-stdv, high=stdv)))  #[batch_size, seq_max, h]
H
hetianjian 已提交
136 137 138 139 140 141 142 143 144 145 146 147
    last_fc = layers.fc(
        input=last,
        name="last_fc",
        size=hidden_size,
        bias_attr=False,
        act=None,
        num_flatten_dims=1,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
            low=-stdv, high=stdv)))  #[bathc_size, h]

    seq_fc_t = layers.transpose(
H
hutuxian 已提交
148
        seq_fc, perm=[1, 0, 2])  #[seq_max, batch_size, h]
H
hetianjian 已提交
149
    add = layers.elementwise_add(
H
hutuxian 已提交
150
        seq_fc_t, last_fc)  #[seq_max, batch_size, h]
H
hetianjian 已提交
151 152 153 154
    b = layers.create_parameter(
        shape=[hidden_size],
        dtype='float32',
        default_initializer=fluid.initializer.Constant(value=0.0))  #[h]
H
hutuxian 已提交
155
    add = layers.elementwise_add(add, b)  #[seq_max, batch_size, h]
H
hetianjian 已提交
156

H
hutuxian 已提交
157
    add_sigmoid = layers.sigmoid(add) #[seq_max, batch_size, h] 
H
hetianjian 已提交
158
    add_sigmoid = layers.transpose(
H
hutuxian 已提交
159
        add_sigmoid, perm=[1, 0, 2])  #[batch_size, seq_max, h]
H
hetianjian 已提交
160 161 162 163 164 165 166 167 168 169

    weight = layers.fc(
        input=add_sigmoid,
        name="weight_fc",
        size=1,
        act=None,
        num_flatten_dims=2,
        bias_attr=False,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
H
hutuxian 已提交
170
                low=-stdv, high=stdv)))  #[batch_size, seq_max, 1]
H
hetianjian 已提交
171
    weight *= mask
H
hutuxian 已提交
172 173
    weight_mask = layers.elementwise_mul(seq, weight, axis=0) #[batch_size, seq_max, h]
    global_attention = layers.reduce_sum(weight_mask, dim=1) #[batch_size, h]
H
hetianjian 已提交
174 175

    final_attention = layers.concat(
176
        [global_attention, last], axis=1)  #[batch_size, 2*h]
H
hetianjian 已提交
177 178
    final_attention_fc = layers.fc(
        input=final_attention,
179
        name="final_attention_fc",
H
hetianjian 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        size=hidden_size,
        bias_attr=False,
        act=None,
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
            low=-stdv, high=stdv)))  #[batch_size, h]

    all_vocab = layers.create_global_var(
        shape=[items_num - 1, 1],
        value=0,
        dtype="int64",
        persistable=True,
        name="all_vocab")

    all_emb = layers.embedding(
        input=all_vocab,
        param_attr=fluid.ParamAttr(
            name="emb",
            initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)),
        size=[items_num, hidden_size])  #[all_vocab, h]

    logits = layers.matmul(
        x=final_attention_fc, y=all_emb,
        transpose_y=True)  #[batch_size, all_vocab]
    softmax = layers.softmax_with_cross_entropy(
        logits=logits, label=label)  #[batch_size, 1]
    loss = layers.reduce_mean(softmax)  # [1]
    acc = layers.accuracy(input=logits, label=label, k=20)
208
    return loss, acc, py_reader, feed_datas