mobilenet_v2.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
import time
import sys
import sys
import numpy as np
import argparse
import ast
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework

import math
import sys


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 filter_size,
                 num_filters,
                 stride,
                 padding,
                 channels=None,
                 num_groups=1,
                 name=None,
                 use_cudnn=True):
        super(ConvBNLayer, self).__init__(name)

        tmp_param = ParamAttr(name=name + "_weights")
        self._conv = Conv2D(
            self.full_name(),
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=tmp_param,
            bias_attr=False)

        self._batch_norm = BatchNorm(
            self.full_name(),
            num_filters,
            param_attr=ParamAttr(name=name + "_bn" + "_scale"),
            bias_attr=ParamAttr(name=name + "_bn" + "_offset"),
            moving_mean_name=name + "_bn" + '_mean',
            moving_variance_name=name + "_bn" + '_variance')

    def forward(self, inputs, if_act=True):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        if if_act:
            y = fluid.layers.relu6(y)
        return y


class InvertedResidualUnit(fluid.dygraph.Layer):
    def __init__(self,
                 num_in_filter,
                 num_filters,
                 stride,
                 filter_size,
                 padding,
                 expansion_factor,
                 name=None):
        super(InvertedResidualUnit, self).__init__(name)
        num_expfilter = int(round(num_in_filter * expansion_factor))
        self._expand_conv = ConvBNLayer(
            name=name + "_expand",
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1)

        self._bottleneck_conv = ConvBNLayer(
            name=name + "_dwise",
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            num_groups=num_expfilter,
            use_cudnn=False)

        self._linear_conv = ConvBNLayer(
            name=name + "_linear",
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1)

    def forward(self, inputs, ifshortcut):
        y = self._expand_conv(inputs, if_act=True)
        y = self._bottleneck_conv(y, if_act=True)
        y = self._linear_conv(y, if_act=False)
        if ifshortcut:
            y = fluid.layers.elementwise_add(inputs, y)
        return y


class InvresiBlocks(fluid.dygraph.Layer):
    def __init__(self, in_c, t, c, n, s, name=None):
        super(InvresiBlocks, self).__init__(name)

        self._first_block = InvertedResidualUnit(
            name=name + "_1",
            num_in_filter=in_c,
            num_filters=c,
            stride=s,
            filter_size=3,
            padding=1,
            expansion_factor=t)

        self._inv_blocks = []
        for i in range(1, n):
            tmp = self.add_sublayer(
                sublayer=InvertedResidualUnit(
                    name=name + "_" + str(i + 1),
                    num_in_filter=c,
                    num_filters=c,
                    stride=1,
                    filter_size=3,
                    padding=1,
                    expansion_factor=t),
                name=name + "_" + str(i + 1))
            self._inv_blocks.append(tmp)

    def forward(self, inputs):
        y = self._first_block(inputs, ifshortcut=False)
        for inv_block in self._inv_blocks:
            y = inv_block(y, ifshortcut=True)
        return y


class MobileNetV2(fluid.dygraph.Layer):
    def __init__(self, name, class_dim=1000, scale=1.0):
        super(MobileNetV2, self).__init__(name)
        self.scale = scale
        self.class_dim = class_dim

        bottleneck_params_list = [
            (1, 16, 1, 1),
            (6, 24, 2, 2),
            (6, 32, 3, 2),
            (6, 64, 4, 2),
            (6, 96, 3, 1),
            (6, 160, 3, 2),
            (6, 320, 1, 1),
        ]

        #1. conv1 
        self._conv1 = ConvBNLayer(
            name="conv1_1",
            num_filters=int(32 * scale),
            filter_size=3,
            stride=2,
            padding=1)

        #2. bottleneck sequences
        self._invl = []
        i = 1
        in_c = int(32 * scale)
        for layer_setting in bottleneck_params_list:
            t, c, n, s = layer_setting
            i += 1
            tmp = self.add_sublayer(
                sublayer=InvresiBlocks(
                    name='conv' + str(i),
                    in_c=in_c,
                    t=t,
                    c=int(c * scale),
                    n=n,
                    s=s),
                name='conv' + str(i))
            self._invl.append(tmp)
            in_c = int(c * scale)

        #3. last_conv
        self._conv9 = ConvBNLayer(
            name="conv9",
            num_filters=int(1280 * scale) if scale > 1.0 else 1280,
            filter_size=1,
            stride=1,
            padding=0)

        #4. pool
        self._pool2d_avg = Pool2D(
            name_scope="pool", pool_type='avg', global_pooling=True)

        #5. fc
        tmp_param = ParamAttr(name="fc10_weights")
        self._fc = FC(name_scope="fc",
                      size=class_dim,
                      param_attr=tmp_param,
                      bias_attr=ParamAttr(name="fc10_offset"))

    def forward(self, inputs):
        y = self._conv1(inputs, if_act=True)
        for inv in self._invl:
            y = inv(y)
        y = self._conv9(y, if_act=True)
        y = self._pool2d_avg(y)
        y = self._fc(y)
        return y