model.py 14.2 KB
Newer Older
R
ranqiu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#coding=utf-8

import math

import paddle.v2 as paddle

__all__ = ["conv_seq2seq"]


def gated_conv_with_batchnorm(input,
                              size,
                              context_len,
                              context_start=None,
                              learning_rate=1.0,
                              drop_rate=0.):
    """
    Definition of the convolution block.

    :param input: The input of this block.
    :type input: LayerOutput
    :param size: The dimension of the block's output.
    :type size: int
R
ranqiu 已提交
23
    :param context_len: The context length of the convolution.
R
ranqiu 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    :type context_len: int
    :param context_start: The start position of the context.
    :type context_start: int
    :param learning_rate: The learning rate factor of the parameters in the block.
                          The actual learning rate is the product of the global
                          learning rate and this factor.
    :type learning_rate: float
    :param drop_rate: Dropout rate.
    :type drop_rate: float
    :return: The output of the convolution block.
    :rtype: LayerOutput
    """
    input = paddle.layer.dropout(input=input, dropout_rate=drop_rate)

    context = paddle.layer.mixed(
        size=input.size * context_len,
        input=paddle.layer.context_projection(
            input=input, context_len=context_len, context_start=context_start))

    raw_conv = paddle.layer.fc(
        input=context,
        size=size * 2,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(
            initial_mean=0.,
            initial_std=math.sqrt(4.0 * (1.0 - drop_rate) / context.size),
            learning_rate=learning_rate),
        bias_attr=False)

    batch_norm_conv = paddle.layer.batch_norm(
        input=raw_conv,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(learning_rate=learning_rate))

    with paddle.layer.mixed(size=size) as conv:
        conv += paddle.layer.identity_projection(
            batch_norm_conv, size=size, offset=0)

    with paddle.layer.mixed(size=size, act=paddle.activation.Sigmoid()) as gate:
        gate += paddle.layer.identity_projection(
            batch_norm_conv, size=size, offset=size)

    with paddle.layer.mixed(size=size) as gated_conv:
        gated_conv += paddle.layer.dotmul_operator(conv, gate)

    return gated_conv


def encoder(token_emb,
            pos_emb,
            conv_blocks=[(256, 3)] * 5,
            num_attention=3,
            drop_rate=0.1):
    """
    Definition of the encoder.

    :param token_emb: The embedding vector of the input token.
    :type token_emb: LayerOutput
    :param pos_emb: The embedding vector of the input token's position.
    :type pos_emb: LayerOutput
R
ranqiu 已提交
84 85 86
    :param conv_blocks: The scale list of the convolution blocks. Each element of
                        the list contains output dimension and context length of
                        the corresponding convolution block.
R
ranqiu 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    :type conv_blocks: list of tuple
    :param num_attention: The total number of the attention modules used in the decoder.
    :type num_attention: int
    :param drop_rate: Dropout rate.
    :type drop_rate: float
    :return: The input token encoding.
    :rtype: LayerOutput
    """
    embedding = paddle.layer.addto(
        input=[token_emb, pos_emb],
        layer_attr=paddle.attr.Extra(drop_rate=drop_rate))

    proj_size = conv_blocks[0][0]
    block_input = paddle.layer.fc(
        input=embedding,
        size=proj_size,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(
            initial_mean=0.,
            initial_std=math.sqrt((1.0 - drop_rate) / embedding.size),
            learning_rate=1.0 / (2.0 * num_attention)),
        bias_attr=True, )

    for (size, context_len) in conv_blocks:
        if block_input.size == size:
R
ranqiu 已提交
112
            residual = block_input
R
ranqiu 已提交
113
        else:
R
ranqiu 已提交
114
            residual = paddle.layer.fc(
R
ranqiu 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
                input=block_input,
                size=size,
                act=paddle.activation.Linear(),
                param_attr=paddle.attr.Param(learning_rate=1.0 /
                                             (2.0 * num_attention)),
                bias_attr=True)

        gated_conv = gated_conv_with_batchnorm(
            input=block_input,
            size=size,
            context_len=context_len,
            learning_rate=1.0 / (2.0 * num_attention),
            drop_rate=drop_rate)

        with paddle.layer.mixed(size=size) as block_output:
R
ranqiu 已提交
130
            block_output += paddle.layer.identity_projection(residual)
R
ranqiu 已提交
131 132
            block_output += paddle.layer.identity_projection(gated_conv)

R
ranqiu 已提交
133
        # halve the variance of the sum
R
ranqiu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146
        block_output = paddle.layer.slope_intercept(
            input=block_output, slope=math.sqrt(0.5))

        block_input = block_output

    emb_dim = embedding.size
    encoded_vec = paddle.layer.fc(
        input=block_output,
        size=emb_dim,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(learning_rate=1.0 / (2.0 * num_attention)),
        bias_attr=True)

R
ranqiu 已提交
147
    encoded_sum = paddle.layer.addto(input=[encoded_vec, embedding])
R
ranqiu 已提交
148

R
ranqiu 已提交
149 150
    # halve the variance of the sum
    encoded_sum = paddle.layer.slope_intercept(input=encoded_sum, slope=math.sqrt(0.5))
R
ranqiu 已提交
151

R
ranqiu 已提交
152
    return encoded_vec, encoded_sum
R
ranqiu 已提交
153 154


R
ranqiu 已提交
155
def attention(decoder_state, cur_embedding, encoded_vec, encoded_sum):
R
ranqiu 已提交
156 157 158 159 160 161 162 163 164
    """
    Definition of the attention.

    :param decoder_state: The hidden state of the decoder.
    :type decoder_state: LayerOutput
    :param cur_embedding: The embedding vector of the current token.
    :type cur_embedding: LayerOutput
    :param encoded_vec: The source token encoding.
    :type encoded_vec: LayerOutput
R
ranqiu 已提交
165 166
    :param encoded_sum: The sum of the source token's encoding and embedding.
    :type encoded_sum: LayerOutput
R
ranqiu 已提交
167 168 169
    :return: A context vector.
    :rtype: LayerOutput
    """
R
ranqiu 已提交
170
    residual = decoder_state
R
ranqiu 已提交
171 172 173 174 175 176 177

    state_size = decoder_state.size
    emb_dim = cur_embedding.size
    with paddle.layer.mixed(size=emb_dim, bias_attr=True) as state_summary:
        state_summary += paddle.layer.full_matrix_projection(decoder_state)
        state_summary += paddle.layer.identity_projection(cur_embedding)

R
ranqiu 已提交
178
    # halve the variance of the sum
R
ranqiu 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191
    state_summary = paddle.layer.slope_intercept(
        input=state_summary, slope=math.sqrt(0.5))

    expanded = paddle.layer.expand(input=state_summary, expand_as=encoded_vec)

    m = paddle.layer.linear_comb(weights=expanded, vectors=encoded_vec)

    attention_weight = paddle.layer.fc(
        input=m,
        size=1,
        act=paddle.activation.SequenceSoftmax(),
        bias_attr=False)

R
ranqiu 已提交
192
    scaled = paddle.layer.scaling(weight=attention_weight, input=encoded_sum)
R
ranqiu 已提交
193 194 195 196 197 198 199 200 201 202

    attended = paddle.layer.pooling(
        input=scaled, pooling_type=paddle.pooling.Sum())

    attended_proj = paddle.layer.fc(
        input=attended,
        size=state_size,
        act=paddle.activation.Linear(),
        bias_attr=True)

R
ranqiu 已提交
203
    attention_result = paddle.layer.addto(input=[attended_proj, residual])
R
ranqiu 已提交
204

R
ranqiu 已提交
205
    # halve the variance of the sum
R
ranqiu 已提交
206 207 208 209 210 211 212 213
    attention_result = paddle.layer.slope_intercept(
        input=attention_result, slope=math.sqrt(0.5))
    return attention_result


def decoder(token_emb,
            pos_emb,
            encoded_vec,
R
ranqiu 已提交
214
            encoded_sum,
R
ranqiu 已提交
215 216 217 218 219 220 221 222 223 224 225 226
            dict_size,
            conv_blocks=[(256, 3)] * 3,
            drop_rate=0.1):
    """
    Definition of the decoder.

    :param token_emb: The embedding vector of the input token.
    :type token_emb: LayerOutput
    :param pos_emb: The embedding vector of the input token's position.
    :type pos_emb: LayerOutput
    :param encoded_vec: The source token encoding.
    :type encoded_vec: LayerOutput
R
ranqiu 已提交
227 228
    :param encoded_sum: The sum of the source token's encoding and embedding.
    :type encoded_sum: LayerOutput
R
ranqiu 已提交
229 230
    :param dict_size: The size of the target dictionary.
    :type dict_size: int
R
ranqiu 已提交
231 232 233
    :param conv_blocks: The scale list of the convolution blocks. Each element
                        of the list contains output dimension and context length
                        of the corresponding convolution block.
R
ranqiu 已提交
234 235 236 237 238 239 240
    :type conv_blocks: list of tuple
    :param drop_rate: Dropout rate.
    :type drop_rate: float
    :return: The probability of the predicted token.
    :rtype: LayerOutput
    """

R
ranqiu 已提交
241
    def attention_step(decoder_state, cur_embedding, encoded_vec, encoded_sum):
R
ranqiu 已提交
242 243 244 245
        conditional = attention(
            decoder_state=decoder_state,
            cur_embedding=cur_embedding,
            encoded_vec=encoded_vec,
R
ranqiu 已提交
246
            encoded_sum=encoded_sum)
R
ranqiu 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        return conditional

    embedding = paddle.layer.addto(
        input=[token_emb, pos_emb],
        layer_attr=paddle.attr.Extra(drop_rate=drop_rate))

    proj_size = conv_blocks[0][0]
    block_input = paddle.layer.fc(
        input=embedding,
        size=proj_size,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(
            initial_mean=0.,
            initial_std=math.sqrt((1.0 - drop_rate) / embedding.size)),
        bias_attr=True, )

    for (size, context_len) in conv_blocks:
        if block_input.size == size:
R
ranqiu 已提交
265
            residual = block_input
R
ranqiu 已提交
266
        else:
R
ranqiu 已提交
267
            residual = paddle.layer.fc(
R
ranqiu 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                input=block_input,
                size=size,
                act=paddle.activation.Linear(),
                bias_attr=True)

        decoder_state = gated_conv_with_batchnorm(
            input=block_input,
            size=size,
            context_len=context_len,
            context_start=0,
            drop_rate=drop_rate)

        group_inputs = [
            decoder_state,
            embedding,
            paddle.layer.StaticInput(input=encoded_vec),
R
ranqiu 已提交
284
            paddle.layer.StaticInput(input=encoded_sum),
R
ranqiu 已提交
285 286 287 288 289
        ]

        conditional = paddle.layer.recurrent_group(
            step=attention_step, input=group_inputs)

R
ranqiu 已提交
290 291 292
        block_output = paddle.layer.addto(input=[conditional, residual])

        # halve the variance of the sum
R
ranqiu 已提交
293 294 295 296 297 298 299 300 301 302 303 304
        block_output = paddle.layer.slope_intercept(
            input=block_output, slope=math.sqrt(0.5))

        block_input = block_output

    out_emb_dim = embedding.size
    block_output = paddle.layer.fc(
        input=block_output,
        size=out_emb_dim,
        act=paddle.activation.Linear(),
        layer_attr=paddle.attr.Extra(drop_rate=drop_rate))

R
ranqiu 已提交
305 306 307 308 309 310 311 312
    decoder_out = paddle.layer.fc(
        input=block_output,
        size=dict_size,
        act=paddle.activation.Softmax(),
        param_attr=paddle.attr.Param(
            initial_mean=0.,
            initial_std=math.sqrt((1.0 - drop_rate) / block_output.size)),
        bias_attr=True)
R
ranqiu 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

    return decoder_out


def conv_seq2seq(src_dict_size,
                 trg_dict_size,
                 pos_size,
                 emb_dim,
                 enc_conv_blocks=[(256, 3)] * 5,
                 dec_conv_blocks=[(256, 3)] * 3,
                 drop_rate=0.1,
                 is_infer=False):
    """
    Definition of convolutional sequence-to-sequence network.

    :param src_dict_size: The size of the source dictionary.
    :type src_dict_size: int
    :param trg_dict_size: The size of the target dictionary.
    :type trg_dict_size: int
    :param pos_size: The total number of the position indexes, which means
                     the maximum value of the index is pos_size - 1.
    :type pos_size: int
    :param emb_dim: The dimension of the embedding vector.
    :type emb_dim: int
R
ranqiu 已提交
337 338 339
    :param enc_conv_blocks: The scale list of the encoder's convolution blocks. Each element
                            of the list contains output dimension and context length of the
                            corresponding convolution block.
R
ranqiu 已提交
340
    :type enc_conv_blocks: list of tuple
R
ranqiu 已提交
341 342 343
    :param dec_conv_blocks: The scale list of the decoder's convolution blocks. Each element
                            of the list contains output dimension and context length of the
                            corresponding convolution block.
R
ranqiu 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
    :type dec_conv_blocks: list of tuple
    :param drop_rate: Dropout rate.
    :type drop_rate: float
    :param is_infer: Whether infer or not.
    :type is_infer: bool
    :return: Cost or output layer.
    :rtype: LayerOutput
    """
    src = paddle.layer.data(
        name='src_word',
        type=paddle.data_type.integer_value_sequence(src_dict_size))
    src_pos = paddle.layer.data(
        name='src_word_pos',
        type=paddle.data_type.integer_value_sequence(pos_size +
                                                     1))  # one for padding

    src_emb = paddle.layer.embedding(
        input=src,
        size=emb_dim,
        name='src_word_emb',
        param_attr=paddle.attr.Param(initial_mean=0., initial_std=0.1))
    src_pos_emb = paddle.layer.embedding(
        input=src_pos,
        size=emb_dim,
        name='src_pos_emb',
        param_attr=paddle.attr.Param(initial_mean=0., initial_std=0.1))

    num_attention = len(dec_conv_blocks)
R
ranqiu 已提交
372
    encoded_vec, encoded_sum = encoder(
R
ranqiu 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        token_emb=src_emb,
        pos_emb=src_pos_emb,
        conv_blocks=enc_conv_blocks,
        num_attention=num_attention,
        drop_rate=drop_rate)

    trg = paddle.layer.data(
        name='trg_word',
        type=paddle.data_type.integer_value_sequence(trg_dict_size +
                                                     1))  # one for padding
    trg_pos = paddle.layer.data(
        name='trg_word_pos',
        type=paddle.data_type.integer_value_sequence(pos_size +
                                                     1))  # one for padding

    trg_emb = paddle.layer.embedding(
        input=trg,
        size=emb_dim,
        name='trg_word_emb',
        param_attr=paddle.attr.Param(initial_mean=0., initial_std=0.1))
    trg_pos_emb = paddle.layer.embedding(
        input=trg_pos,
        size=emb_dim,
        name='trg_pos_emb',
        param_attr=paddle.attr.Param(initial_mean=0., initial_std=0.1))

    decoder_out = decoder(
        token_emb=trg_emb,
        pos_emb=trg_pos_emb,
        encoded_vec=encoded_vec,
R
ranqiu 已提交
403
        encoded_sum=encoded_sum,
R
ranqiu 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416
        dict_size=trg_dict_size,
        conv_blocks=dec_conv_blocks,
        drop_rate=drop_rate)

    if is_infer:
        return decoder_out

    trg_next_word = paddle.layer.data(
        name='trg_next_word',
        type=paddle.data_type.integer_value_sequence(trg_dict_size))
    cost = paddle.layer.classification_cost(
        input=decoder_out, label=trg_next_word)

R
ranqiu 已提交
417
    return cost