MODEL_ZOO_cn.md 12.7 KB
Newer Older
W
wangguanzhong 已提交
1 2
# 模型库和基线

3 4
## 测试环境

W
wangguanzhong 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
- Python 2.7.1
- PaddlePaddle 1.5
- CUDA 9.0
- CUDNN 7.4
- NCCL 2.1.2

## 通用设置

- SSD模型在VOC数据集中训练和测试,其余所有模型均在COCO17数据集中训练和测试。
- 除非特殊说明,所有ResNet骨干网络采用[ResNet-B](https://arxiv.org/pdf/1812.01187)结构。
- 对于RCNN和RetinaNet系列模型,训练阶段仅使用水平翻转作为数据增强,测试阶段不使用数据增强。

## 训练策略

- 我们采用和[Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules)相同的训练策略。
- 1x 策略表示:在总batch size为16时,初始学习率为0.02,在6万轮和8万轮后学习率分别下降10倍,最终训练9万轮。在总batch size为8时,初始学习率为0.01,在12万轮和16万轮后学习率分别下降10倍,最终训练18万轮。
- 2x 策略为1x策略的两倍,同时学习率调整位置也为1x的两倍。

## ImageNet预训练模型

Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型均通过标准的Imagenet-1k数据集训练得到。[下载链接](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#supported-models-and-performances)

- 注:ResNet50模型通过余弦学习率调整策略训练得到。[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar)

## 基线

### Faster & Mask R-CNN

| 骨架网络             | 网络类型           | 每张GPU图片个数 | 学习率策略 | Box AP | Mask AP |                           下载                          |
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50             | Faster         |    1    |   1x    |  35.2  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50             | Faster         |    1    |   2x    |  37.1  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50             | Mask           |    1    |   1x    |  36.5  |  32.2   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) |
| ResNet50             | Mask           |    1    |   2x    |  38.2  |  33.4   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) |
| ResNet50-vd          | Faster         |    1    |   1x    |  36.4  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) |
| ResNet50-FPN         | Faster         |    2    |   1x    |  37.2  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN         | Faster         |    2    |   2x    |  37.7  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN         | Mask           |    1    |   1x    |  37.9  |  34.2   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN         | Mask           |    1    |   2x    |  38.7  |  34.7   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) |
| ResNet50-FPN         | Cascade Faster |    2    |   1x    |  40.9  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN      | Faster         |    2    |   2x    |  38.9  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) |
| ResNet50-vd-FPN      | Mask           |    1    |   2x    |  39.8  |  35.4   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) |
| ResNet101            | Faster         |    1    |   1x    |  38.3  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) |
| ResNet101-FPN        | Faster         |    1    |   1x    |  38.7  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-FPN        | Faster         |    1    |   2x    |  39.1  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| ResNet101-FPN        | Mask           |    1    |   1x    |  39.5  |  35.2   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) |
| ResNet101-vd-FPN     | Faster         |    1    |   1x    |  40.5  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) |
| ResNet101-vd-FPN     | Faster         |    1    |   2x    |  40.8  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |
| ResNet101-vd-FPN     | Mask           |    1    |   1x    |  41.4  |  36.8   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Faster         |    1    |   1x    |  42.2  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Faster         |    1    |   2x    |  41.7  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| ResNeXt101-vd-FPN    | Mask           |    1    |   1x    |  42.9  |  37.9   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Mask           |    1    |   2x    |  42.6  |  37.6   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) |
| SENet154-vd-FPN      | Faster         |    1    |  1.44x  |  42.9  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN      | Mask           |    1    |  1.44x  |  44.0  |  38.7   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
### Deformable 卷积网络v2

| 骨架网络             | 网络类型           | 卷积    | 每张GPU图片个数 | 学习率策略 | Box AP | Mask AP |                           下载                           |
| :------------------- | :------------- | :-----: |:--------: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-FPN         | Faster         | c3-c5   |    2      |   1x    |  41.0  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN      | Faster         | c3-c5   |    2      |   2x    |  42.4  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN     | Faster         | c3-c5   |    2      |   1x    |  44.1  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Faster         | c3-c5   |    1      |   1x    |  45.2  |    -    | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN         | Mask           | c3-c5   |    1      |   1x    |  41.9  |  37.3   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN      | Mask           | c3-c5   |    1      |   2x    |  42.9  |  38.0   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN     | Mask           | c3-c5   |    1      |   1x    |  44.6  |  39.2   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Mask           | c3-c5   |    1      |   1x    |  46.2  |  40.4   | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |

#### 注意事项:
- Deformable卷积网络v2(dcn_v2)参考自论文[Deformable ConvNets v2](https://arxiv.org/abs/1811.11168).
- `c3-c5`意思是在resnet模块的3到5阶段增加`dcn`.
- 详细的配置文件在[configs/dcn](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection/configs/dcn)

W
wangguanzhong 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
### Yolo v3

| 骨架网络     | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| DarkNet53    | 608  |    8    |   270e  |  38.9  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53    | 416  |    8    |   270e  |  37.5  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53    | 320  |    8    |   270e  |  34.8  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| MobileNet-V1 | 608  |    8    |   270e  |  29.3  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 416  |    8    |   270e  |  29.3  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 320  |    8    |   270e  |  27.1  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34     | 608  |    8    |   270e  |  36.2  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34     | 416  |    8    |   270e  |  34.3  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34     | 320  |    8    |   270e  |  31.4  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |

### Yolo v3 基于Pasacl VOC数据集

| 骨架网络     | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载 |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| DarkNet53    | 608  |    8    |   270e  |  83.5  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53    | 416  |    8    |   270e  |  83.6  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53    | 320  |    8    |   270e  |  82.2  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| MobileNet-V1 | 608  |    8    |   270e  |  76.2  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 416  |    8    |   270e  |  76.7  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 320  |    8    |   270e  |  75.3  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34     | 608  |    8    |   270e  |  82.6  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34     | 416  |    8    |   270e  |  81.9  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34     | 320  |    8    |   270e  |  80.1  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |

**注意事项:** Yolo v3在8卡,总batch size为64下训练270轮。数据增强包括:mixup, 随机颜色失真,随机剪裁,随机扩张,随机插值法,随机翻转。Yolo v3在训练阶段对minibatch采用随机reshape,可以采用相同的模型测试不同尺寸图片,我们分别提供了尺寸为608/416/320大小的测试结果。

### RetinaNet

|   骨架网络   | 每张GPU图片个数 | 学习率策略 | Box AP | 下载  |
| :-----------  | :-----: | :-----: | :----: | :-------: |
| ResNet50-FPN  |    2    |   1x    |  36.0  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r50_fpn_1x.tar)  |
| ResNet101-FPN |    2    |   1x    |  37.3  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r101_fpn_1x.tar) |

**注意事项:** RetinaNet系列模型中,在总batch size为16下情况下,初始学习率改为0.01。

118
### SSD 基于Pascal VOC数据集
W
wangguanzhong 已提交
119 120 121

|  骨架网络     | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | Box AP | 下载  |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
122
| MobileNet v1 | 300  |    32   |   120e  |  73.13  | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) |
W
wangguanzhong 已提交
123 124

**注意事项:** SSD在2卡,总batch size为64下训练120轮。数据增强包括:随机颜色失真,随机剪裁,随机扩张,随机翻转。