introduction_cn.ipynb 7.6 KB
Notebook
Newer Older
Q
qizhaoaoe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ae69ce68",
   "metadata": {},
   "source": [
    "## 1. PLSC-SwinTransformer模型简介\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "35485bc6",
   "metadata": {},
   "source": [
    "PLSC-SwinTransformer实现了基于[Swin Transformer](https://github.com/microsoft/Swin-Transformer)的视觉分类模型。Swin Transformer是一个层级结构的Vision Transformer(ViT),Swin代表的是滑动窗口。与ViT不同,Swin基于非重叠的局部窗口计算自注意力,并且跨窗口进行连接保证窗口间信息共享,因此Swin Transormer相比于基于全局的ViT更高效。Swin Transformer可以作为CV领域的一个通用的backbone。模型结构如下,\n",
    "\n",
    "![Figure 1 from paper](https://github.com/microsoft/Swin-Transformer/blob/main/figures/teaser.png?raw=true)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "97e174e6",
   "metadata": {},
   "source": [
    "## 2. 模型效果 "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "78137a72",
   "metadata": {},
   "source": [
    "| Model |DType | Phase | Dataset | gpu | img/sec | Top1 Acc | Official |\n",
    "| --- | --- | --- | --- | --- | --- | --- | --- |\n",
    "| Swin-B |FP16 O1|pretrain  |ImageNet2012  |A100*N1C8  |  2155| 0.83362 | 0.835 |\n",
    "| Swin-B |FP16 O2|pretrain  | ImageNet2012 | A100*N1C8 | 3006 | 0.83223\t | 0.835 |\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ace3c48d",
   "metadata": {},
   "source": [
    "## 3. 模型如何使用"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a97a5f56",
   "metadata": {},
   "source": [
    "### 3.1 安装PLSC"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "492fa769-2fe0-4220-b6d9-bbc32f8cca10",
   "metadata": {},
   "source": [
    "```\n",
    "git clone https://github.com/PaddlePaddle/PLSC.git\n",
    "cd /path/to/PLSC/\n",
    "# [optional] pip install -r requirements.txt\n",
    "python setup.py develop\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6b22824d",
   "metadata": {},
   "source": [
    "### 3.2 模型训练"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d68ca5fb",
   "metadata": {},
   "source": [
    "1. 进入任务目录\n",
    "\n",
    "```\n",
    "cd task/classification/swin\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9048df01",
   "metadata": {},
   "source": [
    "2. 准备数据\n",
    "\n",
    "将数据整理成以下格式:\n",
    "```text\n",
    "dataset/\n",
    "└── ILSVRC2012\n",
    "    ├── train\n",
    "    ├── val\n",
    "    ├── train_list.txt\n",
    "    └── val_list.txt\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bea743ea",
   "metadata": {},
   "source": [
    "3. 执行训练命令\n",
    "\n",
    "```shell\n",
    "export PADDLE_NNODES=1\n",
    "export PADDLE_MASTER=\"127.0.0.1:12538\"\n",
    "export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7\n",
    "\n",
    "python -m paddle.distributed.launch \\\n",
    "    --nnodes=$PADDLE_NNODES \\\n",
    "    --master=$PADDLE_MASTER \\\n",
    "    --devices=$CUDA_VISIBLE_DEVICES \\\n",
    "    plsc-train \\\n",
    "    -c ./configs/swin_base_patch4_window7_224_in1k_1n8c_dp_fp16o1.yaml\n",
    "```\n",
    "\n",
    "更多模型的训练教程可参考文档:[Swin训练文档](https://github.com/PaddlePaddle/PLSC/blob/master/task/classification/swin/README.md)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "186a0c17",
   "metadata": {},
   "source": [
    "### 3.3 模型推理"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e97c527c",
   "metadata": {},
   "source": [
    "1. 下载预训练模型和图片\n",
    "\n",
    "```shell\n",
    "# download pretrained model\n",
    "mkdir -p pretrained/swin/Swin_base/\n",
    "wget -O ./pretrained/swin/Swin_base/swin_base_patch4_window7_224_fp16o1.pdparams \n",
    "https://plsc.bj.bcebos.com/models/swin/v2.5/swin_base_patch4_window7_224_fp16o1.pdparams\n",
    "\n",
    "# download image\n",
    "mkdir -p images/\n",
    "wget -O ./images/zebra.png https://plsc.bj.bcebos.com/dataset/test_images/zebra.png \n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a07c6549",
   "metadata": {},
   "source": [
    "2. 导出推理模型\n",
    "\n",
    "```shell\n",
    "plsc-export -c ./configs/swin_base_patch4_window7_224_in1k_1n8c_dp_fp16o1.yaml -o Global.pretrained_model=./pretrained/swin/Swin_base/swin_base_patch4_window7_224_fp16o1 -o Model.data_format=NCHW -o FP16.level=O0\n",
    "```\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ded8e73-3dba-49ce-bfb3-fcf7f3f0fc1d",
   "metadata": {},
   "source": [
    "3. 图片预测"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9533d4df-acb3-474f-b591-f210639a0a02",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "from plsc.data.dataset import default_loader\n",
    "from plsc.data.preprocess import Resize\n",
    "from plsc.engine.inference import Predictor\n",
    "\n",
    "\n",
    "def preprocess(img):\n",
    "    resize = Resize(size=224, \n",
    "                    interpolation=\"bicubic\", \n",
    "                    backend=\"pil\")\n",
    "    img = np.array(resize(img))\n",
    "    scale = 1.0 / 255.0\n",
    "    mean = np.array([0.485, 0.456, 0.406])\n",
    "    std = np.array([0.229, 0.224, 0.225])\n",
    "    img = (img * scale - mean) / std\n",
    "    img = img[np.newaxis, :, :, :]\n",
    "    img = img.transpose((0, 3, 1, 2))\n",
    "    return {'x': img.astype('float32')}\n",
    "\n",
    "\n",
    "def postprocess(logits):\n",
    "    \n",
    "    def softmax(x, epsilon=1e-6):\n",
    "        exp_x = np.exp(x)\n",
    "        sfm = (exp_x + epsilon) / (np.sum(exp_x) + epsilon)\n",
    "        return sfm\n",
    "\n",
    "    pred = np.array(logits).squeeze()\n",
    "    pred = softmax(pred)\n",
    "    pred_class_idx = pred.argsort()[::-1][0]\n",
    "    return pred_class_idx, pred[pred_class_idx]\n",
    "\n",
    "\n",
    "infer_model = \"./output/swin_base_patch4_window7_224/swin_base_patch4_window7_224.pdmodel\"\n",
    "infer_params = \"./output/swin_base_patch4_window7_224/swin_base_patch4_window7_224.pdiparams\"\n",
    "\n",
    "predictor = Predictor(\n",
    "    model_file=infer_model,\n",
    "    params_file=infer_params,\n",
    "    preprocess_fn=preprocess,\n",
    "    postprocess_fn=postprocess)\n",
    "\n",
    "image = default_loader(\"./images/zebra.png \")\n",
    "pred_class_idx, pred_score = predictor.predict(image)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d375934d",
   "metadata": {},
   "source": [
    "## 4. 相关论文及引用信息\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "29f05b07-d323-45e4-b00d-0728eafb5af7",
   "metadata": {},
   "source": [
    "```text\n",
    "@inproceedings{liu2021Swin,\n",
    "  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},\n",
    "  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},\n",
    "  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},\n",
    "  year={2021}\n",
    "}\n",
    "```"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}