train.py 5.1 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import argparse
import os

import paddle
import paddlenlp as ppnlp
S
Steffy-zxf 已提交
20
from paddlenlp.datasets import ChnSentiCorp
Z
Zeyu Chen 已提交
21

S
Steffy-zxf 已提交
22
from utils import load_vocab, generate_batch, convert_example
Z
Zeyu Chen 已提交
23 24 25 26

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--epochs", type=int, default=3, help="Number of epoches for training.")
S
Steffy-zxf 已提交
27
parser.add_argument('--use_gpu', type=eval, default=True, help="Whether use GPU for training, input should be True or False")
Z
Zeyu Chen 已提交
28 29 30 31
parser.add_argument("--lr", type=float, default=5e-4, help="Learning rate used to train.")
parser.add_argument("--save_dir", type=str, default='chekpoints/', help="Directory to save model checkpoint")
parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number of a batch for training.")
parser.add_argument("--vocab_path", type=str, default="./word_dict.txt", help="The directory to dataset.")
S
Steffy-zxf 已提交
32
parser.add_argument('--network', type=str, default="bilstm_attn", help="Which network you would like to choose bow, lstm, bilstm, gru, bigru, rnn, birnn, bilstm_attn and textcnn?")
Z
Zeyu Chen 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
args = parser.parse_args()
# yapf: enable


def create_dataloader(dataset,
                      trans_fn=None,
                      mode='train',
                      batch_size=1,
                      use_gpu=False,
                      pad_token_id=0):
    """
    Creats dataloader.

    Args:
        dataset(obj:`paddle.io.Dataset`): Dataset instance.
        mode(obj:`str`, optional, defaults to obj:`train`): If mode is 'train', it will shuffle the dataset randomly.
        batch_size(obj:`int`, optional, defaults to 1): The sample number of a mini-batch.
        use_gpu(obj:`bool`, optional, defaults to obj:`False`): Whether to use gpu to run.
        pad_token_id(obj:`int`, optional, defaults to 0): The pad token index.

    Returns:
        dataloader(obj:`paddle.io.DataLoader`): The dataloader which generates batches.
    """
    if trans_fn:
        dataset = dataset.apply(trans_fn, lazy=True)

    if mode == 'train' and use_gpu:
        sampler = paddle.io.DistributedBatchSampler(
            dataset=dataset, batch_size=batch_size, shuffle=True)
    else:
        shuffle = True if mode == 'train' else False
        sampler = paddle.io.BatchSampler(
            dataset=dataset, batch_size=batch_size, shuffle=shuffle)
S
Steffy-zxf 已提交
67 68 69 70 71
    dataloader = paddle.io.DataLoader(
        dataset,
        batch_sampler=sampler,
        return_list=True,
        collate_fn=lambda batch: generate_batch(batch, pad_token_id=pad_token_id))
Z
Zeyu Chen 已提交
72 73 74 75
    return dataloader


if __name__ == "__main__":
S
Steffy-zxf 已提交
76
    paddle.set_device('gpu') if args.use_gpu else paddle.set_device('cpu')
Z
Zeyu Chen 已提交
77 78 79 80 81 82 83 84

    # Loads vocab.
    if not os.path.exists(args.vocab_path):
        raise RuntimeError('The vocab_path  can not be found in the path %s' %
                           args.vocab_path)
    vocab = load_vocab(args.vocab_path)

    # Loads dataset.
S
Steffy-zxf 已提交
85
    train_ds, dev_ds, test_ds = ChnSentiCorp.get_datasets(
Z
Zeyu Chen 已提交
86 87 88
        ['train', 'dev', 'test'])

    # Constructs the newtork.
S
Steffy-zxf 已提交
89 90
    label_list = train_ds.get_labels()
    model = ppnlp.models.Senta(
S
Steffy-zxf 已提交
91
        network=args.network,
S
Steffy-zxf 已提交
92 93 94
        vocab_size=len(vocab),
        num_classes=len(label_list))
    model = paddle.Model(model)
Z
Zeyu Chen 已提交
95 96 97 98 99 100 101 102

    # Reads data and generates mini-batches.
    trans_fn = partial(
        convert_example,
        vocab=vocab,
        unk_token_id=vocab['[UNK]'],
        is_test=False)
    train_loader = create_dataloader(
S
Steffy-zxf 已提交
103
        train_ds, trans_fn=trans_fn, batch_size=args.batch_size, mode='train')
Z
Zeyu Chen 已提交
104
    dev_loader = create_dataloader(
S
Steffy-zxf 已提交
105
        dev_ds,
Z
Zeyu Chen 已提交
106
        trans_fn=trans_fn,
S
Steffy-zxf 已提交
107 108
        batch_size=args.batch_size,
        mode='validation')
Z
Zeyu Chen 已提交
109
    test_loader = create_dataloader(
S
Steffy-zxf 已提交
110
        test_ds, trans_fn=trans_fn, batch_size=args.batch_size, mode='test')
Z
Zeyu Chen 已提交
111 112

    optimizer = paddle.optimizer.Adam(
S
Steffy-zxf 已提交
113
        parameters=model.parameters(), learning_rate=args.lr)
Z
Zeyu Chen 已提交
114 115 116

    # Defines loss and metric.
    criterion = paddle.nn.CrossEntropyLoss()
S
Steffy-zxf 已提交
117
    metric = paddle.metric.Accuracy()
Z
Zeyu Chen 已提交
118 119 120 121 122 123 124 125 126 127 128

    model.prepare(optimizer, criterion, metric)

    # Loads pre-trained parameters.
    if args.init_from_ckpt:
        model.load(args.init_from_ckpt)
        print("Loaded checkpoint from %s" % args.init_from_ckpt)

    # Starts training and evaluating.
    model.fit(train_loader,
              dev_loader,
S
Steffy-zxf 已提交
129 130
              epochs=args.epochs,
              save_dir=args.save_dir)
Z
Zeyu Chen 已提交
131 132 133

    # Finally tests model.
    results = model.evaluate(test_loader)
S
Steffy-zxf 已提交
134
    print("Finally test acc: %.5f" % results['acc'])