bmn_reader.py 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
16
import platform
17 18 19 20 21
import random
import numpy as np
import multiprocessing
import json
import logging
22 23
import functools
import paddle
H
huangjun12 已提交
24
import paddle.fluid as fluid
25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
logger = logging.getLogger(__name__)

from .reader_utils import DataReader
from models.bmn.bmn_utils import iou_with_anchors, ioa_with_anchors


class BMNReader(DataReader):
    """
    Data reader for BMN model, which was stored as features extracted by prior networks
    dataset cfg: anno_file, annotation file path,
                 feat_path, feature path,
                 tscale, temporal length of BM map,
                 dscale, duration scale of BM map,
                 anchor_xmin, anchor_xmax, the range of each point in the feature sequence,
                 batch_size, batch size of input data,
                 num_threads, number of threads of data processing   
    """

    def __init__(self, name, mode, cfg):
        self.name = name
        self.mode = mode
        self.tscale = cfg.MODEL.tscale  # 100
        self.dscale = cfg.MODEL.dscale  # 100
        self.anno_file = cfg.MODEL.anno_file
        self.file_list = cfg.INFER.filelist
        self.subset = cfg[mode.upper()]['subset']
        self.tgap = 1. / self.tscale
        self.feat_path = cfg.MODEL.feat_path

        self.get_dataset_dict()
        self.get_match_map()

        self.batch_size = cfg[mode.upper()]['batch_size']
        self.num_threads = cfg[mode.upper()]['num_threads']
        if (mode == 'test') or (mode == 'infer'):
            self.num_threads = 1  # set num_threads as 1 for test and infer

    def get_dataset_dict(self):
        self.video_dict = {}
        if self.mode == "infer":
            annos = json.load(open(self.file_list))
            for video_name in annos.keys():
                self.video_dict[video_name] = annos[video_name]
        else:
            annos = json.load(open(self.anno_file))
            for video_name in annos.keys():
                video_subset = annos[video_name]["subset"]
                if self.subset in video_subset:
                    self.video_dict[video_name] = annos[video_name]
        self.video_list = list(self.video_dict.keys())
        self.video_list.sort()
        print("%s subset video numbers: %d" %
              (self.subset, len(self.video_list)))

    def get_match_map(self):
        match_map = []
        for idx in range(self.tscale):
            tmp_match_window = []
            xmin = self.tgap * idx
            for jdx in range(1, self.tscale + 1):
                xmax = xmin + self.tgap * jdx
                tmp_match_window.append([xmin, xmax])
            match_map.append(tmp_match_window)
        match_map = np.array(match_map)
        match_map = np.transpose(match_map, [1, 0, 2])
        match_map = np.reshape(match_map, [-1, 2])
        self.match_map = match_map
        self.anchor_xmin = [self.tgap * i for i in range(self.tscale)]
        self.anchor_xmax = [self.tgap * i for i in range(1, self.tscale + 1)]

    def get_video_label(self, video_name):
        video_info = self.video_dict[video_name]
        video_second = video_info['duration_second']
        video_labels = video_info['annotations']

        gt_bbox = []
        gt_iou_map = []
        for gt in video_labels:
            tmp_start = max(min(1, gt["segment"][0] / video_second), 0)
            tmp_end = max(min(1, gt["segment"][1] / video_second), 0)
            gt_bbox.append([tmp_start, tmp_end])
            tmp_gt_iou_map = iou_with_anchors(
                self.match_map[:, 0], self.match_map[:, 1], tmp_start, tmp_end)
            tmp_gt_iou_map = np.reshape(tmp_gt_iou_map,
                                        [self.dscale, self.tscale])
            gt_iou_map.append(tmp_gt_iou_map)
        gt_iou_map = np.array(gt_iou_map)
        gt_iou_map = np.max(gt_iou_map, axis=0)

        gt_bbox = np.array(gt_bbox)
        gt_xmins = gt_bbox[:, 0]
        gt_xmaxs = gt_bbox[:, 1]
        gt_lens = gt_xmaxs - gt_xmins
        gt_len_small = 3 * self.tgap
        # gt_len_small=np.maximum(temporal_gap,boundary_ratio*gt_lens)
        gt_start_bboxs = np.stack(
            (gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1)
        gt_end_bboxs = np.stack(
            (gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1)

        match_score_start = []
        for jdx in range(len(self.anchor_xmin)):
            match_score_start.append(
                np.max(
                    ioa_with_anchors(self.anchor_xmin[jdx], self.anchor_xmax[
                        jdx], gt_start_bboxs[:, 0], gt_start_bboxs[:, 1])))
        match_score_end = []
        for jdx in range(len(self.anchor_xmin)):
            match_score_end.append(
                np.max(
                    ioa_with_anchors(self.anchor_xmin[jdx], self.anchor_xmax[
                        jdx], gt_end_bboxs[:, 0], gt_end_bboxs[:, 1])))

        gt_start = np.array(match_score_start)
        gt_end = np.array(match_score_end)
        return gt_iou_map, gt_start, gt_end

    def load_file(self, video_name):
        file_name = video_name + ".npy"
        file_path = os.path.join(self.feat_path, file_name)
        video_feat = np.load(file_path)
        video_feat = video_feat.T
        video_feat = video_feat.astype("float32")
        return video_feat

    def create_reader(self):
        """reader creator for ctcn model"""
        if self.mode == 'infer':
            return self.make_infer_reader()
        if self.num_threads == 1:
            return self.make_reader()
        else:
158 159 160 161 162
            sysstr = platform.system()
            if sysstr == 'Windows':
                return self.make_multithread_reader()
            else:
                return self.make_multiprocess_reader()
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    def make_infer_reader(self):
        """reader for inference"""

        def reader():
            batch_out = []
            for video_name in self.video_list:
                video_idx = self.video_list.index(video_name)
                video_feat = self.load_file(video_name)
                batch_out.append((video_feat, video_idx))

                if len(batch_out) == self.batch_size:
                    yield batch_out
                    batch_out = []

        return reader

    def make_reader(self):
        """single process reader"""

        def reader():
            video_list = self.video_list
            if self.mode == 'train':
                random.shuffle(video_list)

            batch_out = []
            for video_name in video_list:
                video_idx = video_list.index(video_name)
                video_feat = self.load_file(video_name)
                gt_iou_map, gt_start, gt_end = self.get_video_label(video_name)

                if self.mode == 'train' or self.mode == 'valid':
                    batch_out.append((video_feat, gt_iou_map, gt_start, gt_end))
                elif self.mode == 'test':
                    batch_out.append(
                        (video_feat, gt_iou_map, gt_start, gt_end, video_idx))
                else:
                    raise NotImplementedError('mode {} not implemented'.format(
                        self.mode))
                if len(batch_out) == self.batch_size:
                    yield batch_out
                    batch_out = []

        return reader

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    def make_multithread_reader(self):
        def reader():
            if self.mode == 'train':
                random.shuffle(self.video_list)
            for video_name in self.video_list:
                video_idx = self.video_list.index(video_name)
                yield [video_name, video_idx]

        def process_data(sample, mode):
            video_name = sample[0]
            video_idx = sample[1]
            video_feat = self.load_file(video_name)
            gt_iou_map, gt_start, gt_end = self.get_video_label(video_name)
            if mode == 'train' or mode == 'valid':
                return (video_feat, gt_iou_map, gt_start, gt_end)
            elif mode == 'test':
                return (video_feat, gt_iou_map, gt_start, gt_end, video_idx)
            else:
                raise NotImplementedError('mode {} not implemented'.format(
                    mode))

        mapper = functools.partial(process_data, mode=self.mode)

        def batch_reader():
H
huangjun12 已提交
232 233
            xreader = fluid.io.xmap_readers(mapper, reader, self.num_threads,
                                            1024)
234 235 236 237 238 239 240 241 242
            batch = []
            for item in xreader():
                batch.append(item)
                if len(batch) == self.batch_size:
                    yield batch
                    batch = []

        return batch_reader

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    def make_multiprocess_reader(self):
        """multiprocess reader"""

        def read_into_queue(video_list, queue):

            batch_out = []
            for video_name in video_list:
                video_idx = video_list.index(video_name)
                video_feat = self.load_file(video_name)
                gt_iou_map, gt_start, gt_end = self.get_video_label(video_name)

                if self.mode == 'train' or self.mode == 'valid':
                    batch_out.append((video_feat, gt_iou_map, gt_start, gt_end))
                elif self.mode == 'test':
                    batch_out.append(
                        (video_feat, gt_iou_map, gt_start, gt_end, video_idx))
                else:
                    raise NotImplementedError('mode {} not implemented'.format(
                        self.mode))

                if len(batch_out) == self.batch_size:
                    queue.put(batch_out)
                    batch_out = []
            queue.put(None)

        def queue_reader():
            video_list = self.video_list
            if self.mode == 'train':
                random.shuffle(video_list)

            n = self.num_threads
            queue_size = 20
            reader_lists = [None] * n
            file_num = int(len(video_list) // n)
            for i in range(n):
                if i < len(reader_lists) - 1:
                    tmp_list = video_list[i * file_num:(i + 1) * file_num]
                else:
                    tmp_list = video_list[i * file_num:]
                reader_lists[i] = tmp_list

            queue = multiprocessing.Queue(queue_size)
            p_list = [None] * len(reader_lists)
            # for reader_list in reader_lists:
            for i in range(len(reader_lists)):
                reader_list = reader_lists[i]
                p_list[i] = multiprocessing.Process(
                    target=read_into_queue, args=(reader_list, queue))
                p_list[i].start()
            reader_num = len(reader_lists)
            finish_num = 0
            while finish_num < reader_num:
                sample = queue.get()
                if sample is None:
                    finish_num += 1
                else:
                    yield sample
            for i in range(len(p_list)):
                if p_list[i].is_alive():
                    p_list[i].join()

        return queue_reader