AttGAN.py 15.7 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.AttGAN_network import AttGAN_model
from util import utility
import paddle.fluid as fluid
import sys
import time
import copy
import numpy as np


class GTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = AttGAN_model()
            self.fake_img, self.rec_img = model.network_G(
                image_real, label_org_, label_trg_, cfg, name="generator")
            self.fake_img.persistable = True
            self.rec_img.persistable = True
            self.infer_program = self.program.clone(for_test=True)

            self.g_loss_rec = fluid.layers.mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=image_real, y=self.rec_img)))
            self.pred_fake, self.cls_fake = model.network_D(
                self.fake_img, cfg, name="discriminator")
            #wgan
            if cfg.gan_mode == "wgan":
                self.g_loss_fake = -1 * fluid.layers.mean(self.pred_fake)
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_fake,
                    shape=self.pred_fake.shape,
                    value=1.0,
                    dtype='float32')
                self.g_loss_fake = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_fake, y=ones)))

            self.g_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_fake,
                                                               label_trg))
            self.g_loss = self.g_loss_fake + cfg.lambda_rec * self.g_loss_rec + cfg.lambda_cls * self.g_loss_cls

            self.g_loss_fake.persistable = True
            self.g_loss_rec.persistable = True
            self.g_loss_cls.persistable = True
            if cfg.epoch <= 100:
                lr = cfg.g_lr
            else:
                lr = fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch],
                    values=[cfg.g_lr, cfg.g_lr * 0.1], )
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith(
                        "generator"):
                    vars.append(var.name)
            self.param = vars
            optimizer = fluid.optimizer.Adam(
                learning_rate=lr, beta1=0.5, beta2=0.999, name="net_G")

            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        lr = cfg.d_lr
        with fluid.program_guard(self.program):
            model = AttGAN_model()
            clone_image_real = []
            for b in self.program.blocks:
                if b.has_var('image_real'):
                    clone_image_real = b.var('image_real')
                    break
            self.fake_img, _ = model.network_G(
                image_real, label_org, label_trg_, cfg, name="generator")
            self.pred_real, self.cls_real = model.network_D(
                image_real, cfg, name="discriminator")
            self.pred_fake, _ = model.network_D(
                self.fake_img, cfg, name="discriminator")
            self.d_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_real,
                                                               label_org))
            #wgan
            if cfg.gan_mode == "wgan":
                self.d_loss_fake = fluid.layers.reduce_mean(self.pred_fake)
                self.d_loss_real = -1 * fluid.layers.reduce_mean(self.pred_real)
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
                    clone_image_real,
                    self.fake_img,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_real,
                    shape=self.pred_real.shape,
                    value=1.0,
                    dtype='float32')
                self.d_loss_real = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_real, y=ones)))
                self.d_loss_fake = fluid.layers.mean(
                    fluid.layers.square(x=self.pred_fake))
                self.d_loss = self.d_loss_real + self.d_loss_fake + self.d_loss_cls

            self.d_loss_real.persistable = True
            self.d_loss_fake.persistable = True
            self.d_loss.persistable = True
            self.d_loss_cls.persistable = True
            self.d_loss_gp.persistable = True
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith(
                        "discriminator"):
                    vars.append(var.name)
            self.param = vars

            if cfg.epoch <= 100:
                lr = cfg.d_lr
            else:
                lr = fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch],
                    values=[cfg.g_lr, cfg.g_lr * 0.1], )
            optimizer = fluid.optimizer.Adam(
                learning_rate=lr, beta1=0.5, beta2=0.999, name="net_D")

            optimizer.minimize(self.d_loss, parameter_list=vars)

    def gradient_penalty(self, f, real, fake=None, cfg=None, name=None):
        def _interpolate(a, b=None):
            shape = [a.shape[0]]
            alpha = fluid.layers.uniform_random_batch_size_like(
                input=a, shape=shape, min=0.0, max=1.0)
            tmp = fluid.layers.elementwise_mul(
                fluid.layers.elementwise_sub(b, a), alpha, axis=0)
            alpha.stop_gradient = True
            tmp.stop_gradient = True
            inner = fluid.layers.elementwise_add(a, tmp, axis=0)
            return inner

        x = _interpolate(real, fake)

        pred, _ = f(x, cfg=cfg, name=name)
        if isinstance(pred, tuple):
            pred = pred[0]
        vars = []
        for var in fluid.default_main_program().list_vars():
            if fluid.io.is_parameter(var) and var.name.startswith(
                    "discriminator"):
                vars.append(var.name)
L
lvmengsi 已提交
164
        grad = fluid.gradients(pred, x, no_grad_set=vars)[0]
L
lvmengsi 已提交
165 166 167
        grad_shape = grad.shape
        grad = fluid.layers.reshape(
            grad, [-1, grad_shape[1] * grad_shape[2] * grad_shape[3]])
L
lvmengsi 已提交
168
        epsilon = 1e-16
L
lvmengsi 已提交
169 170
        norm = fluid.layers.sqrt(
            fluid.layers.reduce_sum(
L
lvmengsi 已提交
171
                fluid.layers.square(grad), dim=1) + epsilon)
L
lvmengsi 已提交
172 173 174 175 176 177
        gp = fluid.layers.reduce_mean(fluid.layers.square(norm - 1.0))
        return gp


class AttGAN(object):
    def add_special_args(self, parser):
L
lvmengsi 已提交
178 179
        parser.add_argument(
            '--image_size', type=int, default=256, help="image size")
L
lvmengsi 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        parser.add_argument(
            '--g_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of generator")
        parser.add_argument(
            '--d_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of discriminator")
        parser.add_argument(
            '--c_dim',
            type=int,
            default=13,
            help="the number of attributes we selected")
        parser.add_argument(
            '--d_fc_dim',
            type=int,
            default=1024,
            help="the base fc dim in discriminator")
        parser.add_argument(
            '--lambda_cls',
            type=float,
            default=10.0,
            help="the coefficient of classification")
        parser.add_argument(
            '--lambda_rec',
            type=float,
            default=100.0,
            help="the coefficient of refactor")
        parser.add_argument(
            '--thres_int',
            type=float,
            default=0.5,
            help="thresh change of attributes")
        parser.add_argument(
            '--lambda_gp',
            type=float,
            default=10.0,
            help="the coefficient of gradient penalty")
        parser.add_argument(
            '--n_samples', type=int, default=16, help="batch size when testing")
        parser.add_argument(
            '--selected_attrs',
            type=str,
            default="Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
            help="the attributes we selected to change")
        parser.add_argument(
            '--n_layers',
            type=int,
            default=5,
            help="default layers in the network")

        return parser

    def __init__(self,
                 cfg=None,
                 train_reader=None,
                 test_reader=None,
                 batch_num=1):
        self.cfg = cfg
        self.train_reader = train_reader
        self.test_reader = test_reader
        self.batch_num = batch_num

    def build_model(self):
L
lvmengsi 已提交
246
        data_shape = [-1, 3, self.cfg.image_size, self.cfg.image_size]
L
lvmengsi 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294

        image_real = fluid.layers.data(
            name='image_real', shape=data_shape, dtype='float32')
        label_org = fluid.layers.data(
            name='label_org', shape=[self.cfg.c_dim], dtype='float32')
        label_trg = fluid.layers.data(
            name='label_trg', shape=[self.cfg.c_dim], dtype='float32')
        label_org_ = fluid.layers.data(
            name='label_org_', shape=[self.cfg.c_dim], dtype='float32')
        label_trg_ = fluid.layers.data(
            name='label_trg_', shape=[self.cfg.c_dim], dtype='float32')
        gen_trainer = GTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)
        dis_trainer = DTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, gen_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, dis_trainer, "net_D")

        ### memory optim
        build_strategy = fluid.BuildStrategy()
        build_strategy.enable_inplace = False
        build_strategy.memory_optimize = False

        gen_trainer_program = fluid.CompiledProgram(
            gen_trainer.program).with_data_parallel(
                loss_name=gen_trainer.g_loss.name,
                build_strategy=build_strategy)
        dis_trainer_program = fluid.CompiledProgram(
            dis_trainer.program).with_data_parallel(
                loss_name=dis_trainer.d_loss.name,
                build_strategy=build_strategy)

        t_time = 0

        for epoch_id in range(self.cfg.epoch):
            batch_id = 0
            for i in range(self.batch_num):
                image, label_org = next(self.train_reader())
                label_trg = copy.deepcopy(label_org)

                np.random.shuffle(label_trg)
L
lvmengsi 已提交
295 296 297 298 299 300
                label_org_ = list(
                    map(lambda x: (x * 2.0 - 1.0) * self.cfg.thres_int,
                        label_org))
                label_trg_ = list(
                    map(lambda x: (x * 2.0 - 1.0) * self.cfg.thres_int,
                        label_trg))
L
lvmengsi 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

                tensor_img = fluid.LoDTensor()
                tensor_label_org = fluid.LoDTensor()
                tensor_label_trg = fluid.LoDTensor()
                tensor_label_org_ = fluid.LoDTensor()
                tensor_label_trg_ = fluid.LoDTensor()
                tensor_img.set(image, place)
                tensor_label_org.set(label_org, place)
                tensor_label_trg.set(label_trg, place)
                tensor_label_org_.set(label_org_, place)
                tensor_label_trg_.set(label_trg_, place)
                label_shape = tensor_label_trg.shape
                s_time = time.time()
                # optimize the discriminator network
                if (batch_id + 1) % self.cfg.num_discriminator_time != 0:
                    fetches = [
                        dis_trainer.d_loss.name, dis_trainer.d_loss_real.name,
                        dis_trainer.d_loss_fake.name,
                        dis_trainer.d_loss_cls.name, dis_trainer.d_loss_gp.name
                    ]
                    d_loss, d_loss_real, d_loss_fake, d_loss_cls, d_loss_gp = exe.run(
                        dis_trainer_program,
                        fetch_list=fetches,
                        feed={
                            "image_real": tensor_img,
                            "label_org": tensor_label_org,
                            "label_org_": tensor_label_org_,
                            "label_trg": tensor_label_trg,
                            "label_trg_": tensor_label_trg_
                        })

                    batch_time = time.time() - s_time
                    t_time += batch_time
                    print("epoch{}: batch{}:  \n\
                         d_loss: {}; d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {} \n\
                         Batch_time_cost: {:.2f}"
                          .format(epoch_id, batch_id, d_loss[0], d_loss_real[
                              0], d_loss_fake[0], d_loss_cls[0], d_loss_gp[0],
                                  batch_time))
                # optimize the generator network
                else:
                    d_fetches = [
                        gen_trainer.g_loss_fake.name,
                        gen_trainer.g_loss_rec.name,
                        gen_trainer.g_loss_cls.name, gen_trainer.fake_img.name
                    ]
                    g_loss_fake, g_loss_rec, g_loss_cls, fake_img = exe.run(
                        gen_trainer_program,
                        fetch_list=d_fetches,
                        feed={
                            "image_real": tensor_img,
                            "label_org": tensor_label_org,
                            "label_org_": tensor_label_org_,
                            "label_trg": tensor_label_trg,
                            "label_trg_": tensor_label_trg_
                        })
                    print("epoch{}: batch{}: \n\
                         g_loss_fake: {}; g_loss_rec: {}; g_loss_cls: {}"
                          .format(epoch_id, batch_id, g_loss_fake[0],
                                  g_loss_rec[0], g_loss_cls[0]))
                sys.stdout.flush()
                batch_id += 1

            if self.cfg.run_test:
                test_program = gen_trainer.infer_program
                utility.save_test_image(epoch_id, self.cfg, exe, place,
                                        test_program, gen_trainer,
                                        self.test_reader)

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, gen_trainer,
                                    "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, dis_trainer,
                                    "net_D")