run.py 20.9 KB
Newer Older
X
xuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random
import json
X
xuezhong 已提交
24
import six
X
xuezhong 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
sys.path.append('..')

from args import *
import rc_model
from dataset import BRCDataset
import logging
import pickle
from utils import normalize
from utils import compute_bleu_rouge
X
xuezhong 已提交
45
from vocab import Vocab
X
xuezhong 已提交
46

Q
qiuxuezhong 已提交
47

X
xuezhong 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
def prepare_batch_input(insts, args):
    doc_num = args.doc_num

    batch_size = len(insts['raw_data'])
    new_insts = []

    for i in range(batch_size):
        p_id = []
        q_id = []
        p_ids = []
        q_ids = []
        p_len = 0
        for j in range(i * doc_num, (i + 1) * doc_num):
            p_ids.append(insts['passage_token_ids'][j])
            p_id = p_id + insts['passage_token_ids'][j]
            q_ids.append(insts['question_token_ids'][j])
            q_id = q_id + insts['question_token_ids'][j]
        p_len = len(p_id)

        def _get_label(idx, ref_len):
            ret = [0.0] * ref_len
            if idx >= 0 and idx < ref_len:
                ret[idx] = 1.0
            return [[x] for x in ret]

        start_label = _get_label(insts['start_id'][i], p_len)
        end_label = _get_label(insts['end_id'][i], p_len)
        new_inst = q_ids + [start_label, end_label] + p_ids
        new_insts.append(new_inst)
    return new_insts


def LodTensor_Array(lod_tensor):
    lod = lod_tensor.lod()
    array = np.array(lod_tensor)
    new_array = []
    for i in range(len(lod[0]) - 1):
        new_array.append(array[lod[0][i]:lod[0][i + 1]])
    return new_array


def print_para(train_prog, train_exe, logger, args):
    if args.para_print:
        param_list = train_prog.block(0).all_parameters()
        param_name_list = [p.name for p in param_list]
        num_sum = 0
        for p_name in param_name_list:
            p_array = np.array(train_exe.scope.find_var(p_name).get_tensor())
            param_num = np.prod(p_array.shape)
            num_sum = num_sum + param_num
Q
qiuxuezhong 已提交
98 99 100 101 102
            logger.info(
                "param: {0},  mean={1}  max={2}  min={3}  num={4} {5}".format(
                    p_name,
                    p_array.mean(),
                    p_array.max(), p_array.min(), p_array.shape, param_num))
X
xuezhong 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        logger.info("total param num: {0}".format(num_sum))


def find_best_answer_for_passage(start_probs, end_probs, passage_len, args):
    """
    Finds the best answer with the maximum start_prob * end_prob from a single passage
    """
    if passage_len is None:
        passage_len = len(start_probs)
    else:
        passage_len = min(len(start_probs), passage_len)
    best_start, best_end, max_prob = -1, -1, 0
    for start_idx in range(passage_len):
        for ans_len in range(args.max_a_len):
            end_idx = start_idx + ans_len
            if end_idx >= passage_len:
                continue
            prob = start_probs[start_idx] * end_probs[end_idx]
            if prob > max_prob:
                best_start = start_idx
                best_end = end_idx
                max_prob = prob
    return (best_start, best_end), max_prob


def find_best_answer(sample, start_prob, end_prob, padded_p_len, args):
    """
    Finds the best answer for a sample given start_prob and end_prob for each position.
    This will call find_best_answer_for_passage because there are multiple passages in a sample
    """
    best_p_idx, best_span, best_score = None, None, 0
    for p_idx, passage in enumerate(sample['passages']):
        if p_idx >= args.max_p_num:
            continue
        passage_len = min(args.max_p_len, len(passage['passage_tokens']))
        answer_span, score = find_best_answer_for_passage(
            start_prob[p_idx * padded_p_len:(p_idx + 1) * padded_p_len],
            end_prob[p_idx * padded_p_len:(p_idx + 1) * padded_p_len],
            passage_len, args)
        if score > best_score:
            best_score = score
            best_p_idx = p_idx
            best_span = answer_span
    if best_p_idx is None or best_span is None:
        best_answer = ''
    else:
        best_answer = ''.join(sample['passages'][best_p_idx]['passage_tokens'][
            best_span[0]:best_span[1] + 1])
    return best_answer


Q
qiuxuezhong 已提交
154 155
def validation(inference_program, avg_cost, s_probs, e_probs, feed_order, place,
               vocab, brc_data, logger, args):
X
xuezhong 已提交
156 157 158 159
    """
        
    """
    parallel_executor = fluid.ParallelExecutor(
Q
qiuxuezhong 已提交
160 161 162 163
        main_program=inference_program,
        use_cuda=bool(args.use_gpu),
        loss_name=avg_cost.name)
    print_para(inference_program, parallel_executor, logger, args)
X
xuezhong 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

    # Use test set as validation each pass
    total_loss = 0.0
    count = 0
    pred_answers, ref_answers = [], []
    val_feed_list = [
        inference_program.global_block().var(var_name)
        for var_name in feed_order
    ]
    val_feeder = fluid.DataFeeder(val_feed_list, place)
    pad_id = vocab.get_id(vocab.pad_token)
    dev_batches = brc_data.gen_mini_batches(
        'dev', args.batch_size, pad_id, shuffle=False)

    for batch_id, batch in enumerate(dev_batches, 1):
        feed_data = prepare_batch_input(batch, args)
        val_fetch_outs = parallel_executor.run(
Q
qiuxuezhong 已提交
181 182 183
            feed=val_feeder.feed(feed_data),
            fetch_list=[avg_cost.name, s_probs.name, e_probs.name],
            return_numpy=False)
X
xuezhong 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

        total_loss += np.array(val_fetch_outs[0])[0]

        start_probs = LodTensor_Array(val_fetch_outs[1])
        end_probs = LodTensor_Array(val_fetch_outs[2])
        count += len(batch['raw_data'])

        padded_p_len = len(batch['passage_token_ids'][0])
        for sample, start_prob, end_prob in zip(batch['raw_data'], start_probs,
                                                end_probs):

            best_answer = find_best_answer(sample, start_prob, end_prob,
                                           padded_p_len, args)
            pred_answers.append({
                'question_id': sample['question_id'],
                'question_type': sample['question_type'],
                'answers': [best_answer],
                'entity_answers': [[]],
                'yesno_answers': []
            })
            if 'answers' in sample:
                ref_answers.append({
                    'question_id': sample['question_id'],
                    'question_type': sample['question_type'],
                    'answers': sample['answers'],
                    'entity_answers': [[]],
                    'yesno_answers': []
                })
    if args.result_dir is not None and args.result_name is not None:
X
xuezhong 已提交
213 214
        if not os.path.exists(args.result_dir):
            os.makedirs(args.result_dir)
Q
qiuxuezhong 已提交
215 216 217 218 219 220
        result_file = os.path.join(args.result_dir, args.result_name + '.json')
        with open(result_file, 'w') as fout:
            for pred_answer in pred_answers:
                fout.write(json.dumps(pred_answer, ensure_ascii=False) + '\n')
        logger.info('Saving {} results to {}'.format(args.result_name,
                                                     result_file))
X
xuezhong 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    ave_loss = 1.0 * total_loss / count

    # compute the bleu and rouge scores if reference answers is provided
    if len(ref_answers) > 0:
        pred_dict, ref_dict = {}, {}
        for pred, ref in zip(pred_answers, ref_answers):
            question_id = ref['question_id']
            if len(ref['answers']) > 0:
                pred_dict[question_id] = normalize(pred['answers'])
                ref_dict[question_id] = normalize(ref['answers'])
        bleu_rouge = compute_bleu_rouge(pred_dict, ref_dict)
    else:
        bleu_rouge = None
    return ave_loss, bleu_rouge

Q
qiuxuezhong 已提交
237

X
xuezhong 已提交
238 239 240
def train(logger, args):
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
X
xuezhong 已提交
241 242 243 244
        if six.PY2:
            vocab = pickle.load(fin)
        else:
            vocab = pickle.load(fin, encoding='bytes')
X
xuezhong 已提交
245 246 247 248 249 250 251 252 253 254 255
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.trainset, args.devset)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
Q
qiuxuezhong 已提交
256 257
    main_program.random_seed = args.random_seed
    startup_prog.random_seed = args.random_seed
X
xuezhong 已提交
258 259 260
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
            avg_cost, s_probs, e_probs, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
261
                args.hidden_size, vocab, args)
X
xuezhong 已提交
262 263 264
            # clone from default main program and use it as the validation program
            inference_program = main_program.clone(for_test=True)

Q
qiuxuezhong 已提交
265 266 267
            # build optimizer
            if args.optim == 'sgd':
                optimizer = fluid.optimizer.SGD(
X
xuezhong 已提交
268 269 270
                    learning_rate=args.learning_rate,
                    regularization=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=args.weight_decay))
Q
qiuxuezhong 已提交
271 272
            elif args.optim == 'adam':
                optimizer = fluid.optimizer.Adam(
X
xuezhong 已提交
273 274 275 276
                    learning_rate=args.learning_rate,
                    regularization=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=args.weight_decay))

Q
qiuxuezhong 已提交
277 278
            elif args.optim == 'rprop':
                optimizer = fluid.optimizer.RMSPropOptimizer(
X
xuezhong 已提交
279 280 281
                    learning_rate=args.learning_rate,
                    regularization=fluid.regularizer.L2DecayRegularizer(
                        regularization_coeff=args.weight_decay))
Q
qiuxuezhong 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            else:
                logger.error('Unsupported optimizer: {}'.format(args.optim))
                exit(-1)
            optimizer.minimize(avg_cost)

            # initialize parameters
            place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                exe.run(startup_prog)
                embedding_para = fluid.global_scope().find_var(
                    'embedding_para').get_tensor()
                embedding_para.set(vocab.embeddings.astype(np.float32), place)

            # prepare data
            feed_list = [
                main_program.global_block().var(var_name)
                for var_name in feed_order
            ]
            feeder = fluid.DataFeeder(feed_list, place)

            logger.info('Training the model...')
            parallel_executor = fluid.ParallelExecutor(
                main_program=main_program,
                use_cuda=bool(args.use_gpu),
                loss_name=avg_cost.name)
            print_para(main_program, parallel_executor, logger, args)

            for pass_id in range(1, args.pass_num + 1):
                pass_start_time = time.time()
                pad_id = vocab.get_id(vocab.pad_token)
                train_batches = brc_data.gen_mini_batches(
                    'train', args.batch_size, pad_id, shuffle=True)
                log_every_n_batch, n_batch_loss = args.log_interval, 0
                total_num, total_loss = 0, 0
                for batch_id, batch in enumerate(train_batches, 1):
                    input_data_dict = prepare_batch_input(batch, args)
                    fetch_outs = parallel_executor.run(
                        feed=feeder.feed(input_data_dict),
                        fetch_list=[avg_cost.name],
                        return_numpy=False)
                    cost_train = np.array(fetch_outs[0])[0]
                    total_num += len(batch['raw_data'])
                    n_batch_loss += cost_train
                    total_loss += cost_train * len(batch['raw_data'])
                    if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
                        print_para(main_program, parallel_executor, logger,
                                   args)
                        logger.info(
                            'Average loss from batch {} to {} is {}'.format(
                                batch_id - log_every_n_batch + 1, batch_id,
                                "%.10f" % (n_batch_loss / log_every_n_batch)))
                        n_batch_loss = 0
                    if args.dev_interval > 0 and batch_id % args.dev_interval == 0:
                        eval_loss, bleu_rouge = validation(
                            inference_program, avg_cost, s_probs, e_probs,
                            feed_order, place, vocab, brc_data, logger, args)
                        logger.info('Dev eval loss {}'.format(eval_loss))
                        logger.info('Dev eval result: {}'.format(bleu_rouge))
                pass_end_time = time.time()

                logger.info('Evaluating the model after epoch {}'.format(
                    pass_id))
                if brc_data.dev_set is not None:
                    eval_loss, bleu_rouge = validation(
                        inference_program, avg_cost, s_probs, e_probs,
                        feed_order, place, vocab, brc_data, logger, args)
                    logger.info('Dev eval loss {}'.format(eval_loss))
                    logger.info('Dev eval result: {}'.format(bleu_rouge))
                else:
                    logger.warning(
                        'No dev set is loaded for evaluation in the dataset!')
                time_consumed = pass_end_time - pass_start_time
                logger.info('Average train loss for epoch {} is {}'.format(
                    pass_id, "%.10f" % (1.0 * total_loss / total_num)))

                if pass_id % args.save_interval == 0:
                    model_path = os.path.join(args.save_dir, str(pass_id))
                    if not os.path.isdir(model_path):
                        os.makedirs(model_path)

                    fluid.io.save_persistables(
                        executor=exe,
                        dirname=model_path,
                        main_program=main_program)

X
xuezhong 已提交
372 373 374 375 376 377 378

def evaluate(logger, args):
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
Q
qiuxuezhong 已提交
379 380
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.devset)
X
xuezhong 已提交
381 382 383 384 385 386 387
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
Q
qiuxuezhong 已提交
388 389
    main_program.random_seed = args.random_seed
    startup_prog.random_seed = args.random_seed
X
xuezhong 已提交
390 391 392
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
            avg_cost, s_probs, e_probs, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
                args.hidden_size, vocab, args)
            # initialize parameters
            place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

            # prepare data
            feed_list = [
                main_program.global_block().var(var_name)
                for var_name in feed_order
            ]
            feeder = fluid.DataFeeder(feed_list, place)
X
xuezhong 已提交
411

X
xuezhong 已提交
412
            inference_program = main_program.clone(for_test=True)
Q
qiuxuezhong 已提交
413 414 415 416 417 418 419 420 421
            eval_loss, bleu_rouge = validation(
                inference_program, avg_cost, s_probs, e_probs, feed_order,
                place, vocab, brc_data, logger, args)
            logger.info('Dev eval loss {}'.format(eval_loss))
            logger.info('Dev eval result: {}'.format(bleu_rouge))
            logger.info('Predicted answers are saved to {}'.format(
                os.path.join(args.result_dir)))


X
xuezhong 已提交
422 423 424 425 426 427
def predict(logger, args):
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
Q
qiuxuezhong 已提交
428 429
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.testset)
X
xuezhong 已提交
430 431 432 433 434 435 436
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
Q
qiuxuezhong 已提交
437 438
    main_program.random_seed = args.random_seed
    startup_prog.random_seed = args.random_seed
X
xuezhong 已提交
439 440 441
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
            avg_cost, s_probs, e_probs, feed_order = rc_model.rc_model(
Q
qiuxuezhong 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
                args.hidden_size, vocab, args)
            # initialize parameters
            place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

            # prepare data
            feed_list = [
                main_program.global_block().var(var_name)
                for var_name in feed_order
            ]
            feeder = fluid.DataFeeder(feed_list, place)
X
xuezhong 已提交
460

X
xuezhong 已提交
461
            inference_program = main_program.clone(for_test=True)
Q
qiuxuezhong 已提交
462 463 464 465
            eval_loss, bleu_rouge = validation(
                inference_program, avg_cost, s_probs, e_probs, feed_order,
                place, vocab, brc_data, logger, args)

X
xuezhong 已提交
466

X
xuezhong 已提交
467 468 469 470 471 472
def prepare(logger, args):
    """
    checks data, creates the directories, prepare the vocabulary and embeddings
    """
    logger.info('Checking the data files...')
    for data_path in args.trainset + args.devset + args.testset:
Q
qiuxuezhong 已提交
473 474
        assert os.path.exists(data_path), '{} file does not exist.'.format(
            data_path)
X
xuezhong 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    logger.info('Preparing the directories...')
    for dir_path in [args.vocab_dir, args.save_dir, args.result_dir]:
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)

    logger.info('Building vocabulary...')
    brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
                          args.trainset, args.devset, args.testset)
    vocab = Vocab(lower=True)
    for word in brc_data.word_iter('train'):
        vocab.add(word)

    unfiltered_vocab_size = vocab.size()
    vocab.filter_tokens_by_cnt(min_cnt=2)
    filtered_num = unfiltered_vocab_size - vocab.size()
Q
qiuxuezhong 已提交
490 491
    logger.info('After filter {} tokens, the final vocab size is {}'.format(
        filtered_num, vocab.size()))
X
xuezhong 已提交
492 493 494 495 496 497 498 499 500

    logger.info('Assigning embeddings...')
    vocab.randomly_init_embeddings(args.embed_size)

    logger.info('Saving vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'wb') as fout:
        pickle.dump(vocab, fout)

    logger.info('Done with preparing!')
X
xuezhong 已提交
501

Q
qiuxuezhong 已提交
502

X
xuezhong 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
if __name__ == '__main__':
    args = parse_args()

    random.seed(args.random_seed)
    np.random.seed(args.random_seed)

    logger = logging.getLogger("brc")
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    if args.log_path:
        file_handler = logging.FileHandler(args.log_path)
        file_handler.setLevel(logging.INFO)
        file_handler.setFormatter(formatter)
        logger.addHandler(file_handler)
    else:
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_handler.setFormatter(formatter)
        logger.addHandler(console_handler)
    args = parse_args()
    logger.info('Running with args : {}'.format(args))
X
xuezhong 已提交
525 526
    if args.prepare:
        prepare(logger, args)
X
xuezhong 已提交
527 528 529 530 531 532
    if args.train:
        train(logger, args)
    if args.evaluate:
        evaluate(logger, args)
    if args.predict:
        predict(logger, args)