reader_cv2.py 6.0 KB
Newer Older
R
ruri 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
import os
import math
import random
import functools
import numpy as np
import paddle
import cv2
import io

random.seed(0)
np.random.seed(0)

DATA_DIM = 224

THREAD = 8
BUF_SIZE = 102400

DATA_DIR = 'data/ILSVRC2012'

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))


def rotate_image(img):
    """ rotate_image """
    (h, w) = img.shape[:2]
    center = (w / 2, h / 2)
    angle = np.random.randint(-10, 11)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(img, M, (w, h))
    return rotated


def random_crop(img, size, scale=None, ratio=None):
    """ random_crop """
    scale = [0.08, 1.0] if scale is None else scale
    ratio = [3. / 4., 4. / 3.] if ratio is None else ratio

    aspect_ratio = math.sqrt(np.random.uniform(*ratio))
    w = 1. * aspect_ratio
    h = 1. / aspect_ratio

    bound = min((float(img.shape[1]) / img.shape[0]) / (w**2),
                (float(img.shape[0]) / img.shape[1]) / (h**2))
    scale_max = min(scale[1], bound)
    scale_min = min(scale[0], bound)

    target_area = img.shape[0] * img.shape[1] * np.random.uniform(scale_min,
                                                                  scale_max)
    target_size = math.sqrt(target_area)
    w = int(target_size * w)
    h = int(target_size * h)

    i = np.random.randint(0, img.size[0] - w + 1)
    j = np.random.randint(0, img.size[1] - h + 1)

    img = img[i:i + h, j:j + w, :]
    resized = cv2.resize(img, (size, size))
    return resized


def distort_color(img):
    return img


def resize_short(img, target_size):
    """ resize_short """
    percent = float(target_size) / min(img.shape[0], img.shape[1])
    resized_width = int(round(img.shape[1] * percent))
    resized_height = int(round(img.shape[0] * percent))
    resized = cv2.resize(img, (resized_width, resized_height))
    return resized


def crop_image(img, target_size, center):
    """ crop_image """
    height, width = img.shape[:2]
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img[h_start:h_end, w_start:w_end, :]
    return img


def process_image(sample,
                  mode,
                  color_jitter,
                  rotate,
                  crop_size=224,
                  mean=None,
                  std=None):
    """ process_image """

    mean = [0.485, 0.456, 0.406] if mean is None else mean
    std = [0.229, 0.224, 0.225] if std is None else std

    img_path = sample[0]
    img = cv2.imread(img_path)

    if mode == 'train':
        if rotate:
            img = rotate_image(img)
        if crop_size > 0:
            img = random_crop(img, crop_size)
        if color_jitter:
            img = distort_color(img)
        if np.random.randint(0, 2) == 1:
            img = img[:, ::-1, :]
    else:
        if crop_size > 0:
            img = resize_short(img, crop_size)

            img = crop_image(img, target_size=crop_size, center=True)

    img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
    img_mean = np.array(mean).reshape((3, 1, 1))
    img_std = np.array(std).reshape((3, 1, 1))
    img -= img_mean
    img /= img_std

    if mode == 'train' or mode == 'val':
        return (img, sample[1])
    elif mode == 'test':
        return (img, )


def image_mapper(**kwargs):
    """ image_mapper """
    return functools.partial(process_image, **kwargs)


def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False,
                    data_dir=DATA_DIR):
    def reader():
        with open(file_list) as flist:
            full_lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(lines)
            if mode == 'train' and os.getenv('PADDLE_TRAINING_ROLE'):
                # distributed mode if the env var `PADDLE_TRAINING_ROLE` exits
                trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
                trainer_count = int(os.getenv("PADDLE_TRAINERS", "1"))
                per_node_lines = len(full_lines) // trainer_count
                lines = full_lines[trainer_id * per_node_lines:(trainer_id + 1)
                                   * per_node_lines]
                print(
                    "read images from %d, length: %d, lines length: %d, total: %d"
                    % (trainer_id * per_node_lines, per_node_lines, len(lines),
                       len(full_lines)))
            else:
                lines = full_lines
            for line in lines:
                if mode == 'train' or mode == 'val':
                    img_path, label = line.split()
                    img_path = img_path.replace("JPEG", "jpeg")
                    img_path = os.path.join(data_dir, img_path)
                    yield img_path, int(label)
                elif mode == 'test':
                    img_path = os.path.join(DATA_DIR, line)
                    yield [img_path]

    image_mapper = functools.partial(
        process_image,
        mode=mode,
        color_jitter=color_jitter,
        rotate=color_jitter,
        crop_size=224)
    reader = paddle.reader.xmap_readers(
        image_mapper, reader, THREAD, BUF_SIZE, order=False)
    return reader


def train(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'train_list.txt')
    return _reader_creator(
        file_list,
        'train',
        shuffle=True,
        color_jitter=False,
        rotate=False,
        data_dir=data_dir)


def val(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'val_list.txt')
    return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)


def test(data_dir=DATA_DIR):
    file_list = os.path.join(data_dir, 'val_list.txt')
    return _reader_creator(file_list, 'test', shuffle=False, data_dir=data_dir)