introduction_cn.ipynb 11.3 KB
Notebook
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a3deebdc",
   "metadata": {},
   "source": [
    "# Cross-Encoder for Quora Duplicate Questions Detection\n",
    "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4fc17643",
   "metadata": {},
   "source": [
    "## Training Data\n",
    "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f66fb11e",
   "metadata": {},
   "source": [
    "## Usage and Performance\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fd12128b",
   "metadata": {},
   "source": [
    "Pre-trained models can be used like this:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d0d04e39",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install --upgrade paddlenlp"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "d07e31aa",
   "metadata": {
    "collapsed": true
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/root/miniconda3/envs/paddle/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n",
      "\u001b[32m[2022-11-21 02:38:07,127] [    INFO]\u001b[0m - Downloading model_config.json from https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/stsb-TinyBERT-L-4/model_config.json\u001b[0m\n",
      "100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 432/432 [00:00<00:00, 425kB/s]\n",
      "\u001b[32m[2022-11-21 02:38:07,197] [    INFO]\u001b[0m - We are using <class 'paddlenlp.transformers.bert.modeling.BertModel'> to load 'cross-encoder/stsb-TinyBERT-L-4'.\u001b[0m\n",
      "\u001b[32m[2022-11-21 02:38:07,198] [    INFO]\u001b[0m - Downloading https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/stsb-TinyBERT-L-4/model_state.pdparams and saved to /root/.paddlenlp/models/cross-encoder/stsb-TinyBERT-L-4\u001b[0m\n",
      "\u001b[32m[2022-11-21 02:38:07,198] [    INFO]\u001b[0m - Downloading model_state.pdparams from https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/stsb-TinyBERT-L-4/model_state.pdparams\u001b[0m\n",
      "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 54.8M/54.8M [00:00<00:00, 64.7MB/s]\n",
      "\u001b[32m[2022-11-21 02:38:08,199] [    INFO]\u001b[0m - Already cached /root/.paddlenlp/models/cross-encoder/stsb-TinyBERT-L-4/model_config.json\u001b[0m\n",
      "W1121 02:38:08.202270 64563 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2\n",
      "W1121 02:38:08.207437 64563 gpu_resources.cc:91] device: 0, cuDNN Version: 7.6.\n",
      "\u001b[32m[2022-11-21 02:38:09,661] [    INFO]\u001b[0m - Weights from pretrained model not used in BertModel: ['classifier.weight', 'classifier.bias']\u001b[0m\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(Tensor(shape=[1, 20, 312], dtype=float32, place=Place(gpu:0), stop_gradient=False,\n",
      "       [[[-0.73827386, -0.57349819,  0.47456041, ..., -0.07317579,\n",
      "           0.23808761, -0.43587247],\n",
      "         [-0.71079123, -0.37019217,  0.44499084, ..., -0.07541266,\n",
      "           0.22209664, -0.48883811],\n",
      "         [-0.61283624,  0.01138088,  0.46346331, ..., -0.15316986,\n",
      "           0.38455290, -0.23527470],\n",
      "         ...,\n",
      "         [-0.19267607, -0.42171016,  0.40080610, ..., -0.04322027,\n",
      "           0.16102640, -0.43728969],\n",
      "         [-0.76348048,  0.00028179,  0.50795513, ...,  0.02495949,\n",
      "           0.32419923, -0.44668996],\n",
      "         [-0.72070849, -0.48510927,  0.47747549, ..., -0.01621611,\n",
      "           0.31407145, -0.38287419]]]), Tensor(shape=[1, 312], dtype=float32, place=Place(gpu:0), stop_gradient=False,\n",
      "       [[ 0.38359359,  0.16227540, -0.58949089, -0.67293817,  0.70552814,\n",
      "          0.74028063, -0.60770833,  0.50480992,  0.71489060, -0.73976040,\n",
      "         -0.11784898,  0.73014355, -0.65726435,  0.17490843, -0.44103470,\n",
      "          0.62014306,  0.35533482, -0.44271812, -0.61711168, -0.70586687,\n",
      "          0.69903672,  0.00862758,  0.69424403,  0.31887573,  0.38736165,\n",
      "          0.02848060, -0.69896543,  0.69952166,  0.56477094,  0.68585342,\n",
      "          0.66026199,  0.67826200,  0.67839348,  0.74852920, -0.04272985,\n",
      "          0.76357287,  0.38685408, -0.69717598,  0.69945419,  0.44048944,\n",
      "         -0.66915488,  0.11735962,  0.37215349,  0.73054057,  0.71345085,\n",
      "          0.66489315,  0.19956835,  0.71552449,  0.64762783, -0.46583632,\n",
      "         -0.09976894, -0.45265704,  0.54242563,  0.42835563, -0.60076892,\n",
      "          0.69768012, -0.72207040, -0.52898210,  0.34657273,  0.05400079,\n",
      "          0.57360554, -0.72731823, -0.71799070, -0.37212241, -0.70602018,\n",
      "         -0.71248102,  0.02778789, -0.73165607,  0.46581894, -0.72120243,\n",
      "          0.60769719, -0.63354278,  0.75307459,  0.00700274, -0.00984141,\n",
      "         -0.58984685,  0.36321065,  0.60098255, -0.72467339,  0.18362086,\n",
      "          0.10687865, -0.63730168, -0.62655306, -0.00187578, -0.51795095,\n",
      "         -0.64884937,  0.69950461,  0.72286713,  0.72522557, -0.45434299,\n",
      "         -0.43063730, -0.10669708, -0.51012146,  0.66286671,  0.69542134,\n",
      "          0.21393165, -0.02928682,  0.67238331,  0.20404275, -0.63556075,\n",
      "          0.55774790,  0.26141557,  0.70166790, -0.03091500,  0.65226245,\n",
      "         -0.69878876,  0.32701582, -0.68492270,  0.67152256,  0.66395414,\n",
      "         -0.68914133, -0.63889050,  0.71558940,  0.50034380, -0.12911484,\n",
      "          0.70831281,  0.68631476, -0.41206849,  0.23268108,  0.67747647,\n",
      "         -0.29744238,  0.65135175, -0.70074749,  0.56074560, -0.63501489,\n",
      "          0.74985635, -0.60603380,  0.66920304, -0.72418481, -0.59756589,\n",
      "         -0.70151484, -0.38735744, -0.66458094, -0.71190053, -0.69316322,\n",
      "          0.43108079, -0.21692288,  0.70705998, -0.14984211,  0.75786442,\n",
      "          0.69729054, -0.68925959, -0.46773866,  0.66707891, -0.07957093,\n",
      "          0.73757517,  0.10062494, -0.73353016,  0.10992812, -0.48824292,\n",
      "          0.62493157,  0.43311006, -0.15723324, -0.48392498, -0.65230477,\n",
      "         -0.41098344, -0.65238249, -0.41507134, -0.55544889, -0.32195652,\n",
      "         -0.74827588, -0.64071310, -0.49207535, -0.69750905, -0.57037342,\n",
      "          0.35724813,  0.74778593,  0.49369636, -0.69870174,  0.24547403,\n",
      "          0.73229605,  0.15653144,  0.41334581,  0.64413625,  0.53084993,\n",
      "         -0.64746642, -0.58720803,  0.63381183,  0.76515305, -0.68342912,\n",
      "          0.65923864, -0.74662960, -0.72339952,  0.32203752, -0.63402468,\n",
      "         -0.71399093, -0.50430977,  0.26967043, -0.21176267,  0.65678287,\n",
      "          0.09193933,  0.23962519,  0.59481263, -0.61463839, -0.28634411,\n",
      "          0.69451737,  0.47513142,  0.30889973, -0.18030594, -0.50777411,\n",
      "          0.71548641, -0.34869543, -0.01252351,  0.12018032,  0.69536412,\n",
      "          0.53745425,  0.54889160, -0.10619923,  0.68386155, -0.68498713,\n",
      "          0.23352134,  0.67296249, -0.12094481, -0.69636226, -0.06552890,\n",
      "          0.00965041, -0.52394331,  0.72305930, -0.17239039, -0.73262835,\n",
      "          0.50841606,  0.39529455, -0.70830429,  0.51234418,  0.68391299,\n",
      "         -0.72483873, -0.51841038, -0.58264560, -0.74197364,  0.46386808,\n",
      "         -0.23263671,  0.21232133, -0.69674802,  0.33948907,  0.75922930,\n",
      "         -0.43505231, -0.53149903, -0.65927148,  0.09607304, -0.68945718,\n",
      "          0.66966355,  0.68096715,  0.66396469,  0.13001618, -0.68894261,\n",
      "         -0.66597682,  0.61407733,  0.69670630,  0.63995171,  0.33257753,\n",
      "          0.66776848,  0.57427299,  0.32768273,  0.69438887,  0.41346189,\n",
      "         -0.71529591, -0.09860074, -0.72291893,  0.16860481, -0.67641008,\n",
      "          0.70644248, -0.24303547,  0.28892463,  0.56054235,  0.55539572,\n",
      "          0.70762485, -0.50166684, -0.70544142, -0.74241722, -0.74010289,\n",
      "          0.70217764, -0.09219251,  0.47989756, -0.17431454,  0.76019192,\n",
      "         -0.09623899, -0.64994997, -0.03216666,  0.70323825, -0.66661566,\n",
      "          0.71163839, -0.08982500, -0.35390857,  0.61377501, -0.49430367,\n",
      "          0.49526611,  0.75078416, -0.05324765, -0.75398672,  0.70934319,\n",
      "          0.21146417, -0.59094489,  0.39163795, -0.67382598, -0.63484156,\n",
      "         -0.27295890,  0.75101918,  0.70603085,  0.71781063, -0.57344818,\n",
      "         -0.22560060, -0.62196493,  0.68178481,  0.61596531, -0.12730023,\n",
      "         -0.69500911,  0.73689735,  0.12627751, -0.26101601, -0.24929181,\n",
      "          0.68093145,  0.05896470]]))\n"
     ]
    }
   ],
   "source": [
    "import paddle\n",
159
    "from paddlenlp.transformers import BertForSequenceClassification\n",
160
    "\n",
161
    "model = BertForSequenceClassification.from_pretrained(\"cross-encoder/stsb-TinyBERT-L-4\")\n",
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
    "print(model(input_ids))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aeccdfe1",
   "metadata": {},
   "source": [
    "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4](https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4),并转换为飞桨模型格式。"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}