train.py 7.4 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
import os
import time
import yaml
import logging
import argparse
import numpy as np
from pprint import pprint
from attrdict import AttrDict

import paddle
import paddle.distributed as dist

import reader
L
liu zhengxi 已提交
14
from paddlenlp.transformers import TransformerModel, CrossEntropyCriterion
J
Jack Zhou 已提交
15
from paddlenlp.utils.log import logger
Z
Zeyu Chen 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config",
        default="./configs/transformer.big.yaml",
        type=str,
        help="Path of the config file. ")
    args = parser.parse_args()
    return args


def do_train(args):
    if args.use_gpu:
        rank = dist.get_rank()
        trainer_count = dist.get_world_size()
    else:
        rank = 0
        trainer_count = 1
L
liu zhengxi 已提交
36
        paddle.set_device("cpu")
Z
Zeyu Chen 已提交
37 38 39 40 41 42 43 44 45 46

    if trainer_count > 1:
        dist.init_parallel_env()

    # Set seed for CE
    random_seed = eval(str(args.random_seed))
    if random_seed is not None:
        paddle.seed(random_seed)

    # Define data loader
47
    (train_loader), (eval_loader) = reader.create_data_loader(args)
Z
Zeyu Chen 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    # Define model
    transformer = TransformerModel(
        src_vocab_size=args.src_vocab_size,
        trg_vocab_size=args.trg_vocab_size,
        max_length=args.max_length + 1,
        n_layer=args.n_layer,
        n_head=args.n_head,
        d_model=args.d_model,
        d_inner_hid=args.d_inner_hid,
        dropout=args.dropout,
        weight_sharing=args.weight_sharing,
        bos_id=args.bos_idx,
        eos_id=args.eos_idx)

    # Define loss
    criterion = CrossEntropyCriterion(args.label_smooth_eps, args.bos_idx)

    scheduler = paddle.optimizer.lr.NoamDecay(
        args.d_model, args.warmup_steps, args.learning_rate, last_epoch=0)

    # Define optimizer
    optimizer = paddle.optimizer.Adam(
        learning_rate=scheduler,
        beta1=args.beta1,
        beta2=args.beta2,
        epsilon=float(args.eps),
        parameters=transformer.parameters())

    # Init from some checkpoint, to resume the previous training
    if args.init_from_checkpoint:
        model_dict = paddle.load(
            os.path.join(args.init_from_checkpoint, "transformer.pdparams"))
        opt_dict = paddle.load(
            os.path.join(args.init_from_checkpoint, "transformer.pdopt"))
        transformer.set_state_dict(model_dict)
        optimizer.set_state_dict(opt_dict)
        print("loaded from checkpoint.")
    # Init from some pretrain models, to better solve the current task
    if args.init_from_pretrain_model:
        model_dict = paddle.load(
            os.path.join(args.init_from_pretrain_model, "transformer.pdparams"))
        transformer.set_state_dict(model_dict)
        print("loaded from pre-trained model.")

    if trainer_count > 1:
        transformer = paddle.DataParallel(transformer)

    # The best cross-entropy value with label smoothing
    loss_normalizer = -(
        (1. - args.label_smooth_eps) * np.log(
            (1. - args.label_smooth_eps)) + args.label_smooth_eps *
        np.log(args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20))

    ce_time = []
    ce_ppl = []
    step_idx = 0

    # Train loop
    for pass_id in range(args.epoch):
        epoch_start = time.time()

        batch_id = 0
        batch_start = time.time()
        for input_data in train_loader:
            (src_word, trg_word, lbl_word) = input_data

            logits = transformer(src_word=src_word, trg_word=trg_word)

            sum_cost, avg_cost, token_num = criterion(logits, lbl_word)

            avg_cost.backward()

            optimizer.step()
            optimizer.clear_grad()

            if step_idx % args.print_step == 0 and rank == 0:
                total_avg_cost = avg_cost.numpy()

                if step_idx == 0:
                    logger.info(
                        "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                        "normalized loss: %f, ppl: %f " %
                        (step_idx, pass_id, batch_id, total_avg_cost,
                         total_avg_cost - loss_normalizer,
                         np.exp([min(total_avg_cost, 100)])))
                else:
                    train_avg_batch_cost = args.print_step / (
                        time.time() - batch_start)
                    logger.info(
                        "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                        "normalized loss: %f, ppl: %f, avg_speed: %.2f step/sec"
                        % (
                            step_idx,
                            pass_id,
                            batch_id,
                            total_avg_cost,
                            total_avg_cost - loss_normalizer,
                            np.exp([min(total_avg_cost, 100)]),
                            train_avg_batch_cost, ))
                batch_start = time.time()

            if step_idx % args.save_step == 0 and step_idx != 0:
                # Validation
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
                transformer.eval()
                total_sum_cost = 0
                total_token_num = 0
                with paddle.no_grad():
                    for input_data in eval_loader:
                        (src_word, trg_word, lbl_word) = input_data
                        logits = transformer(
                            src_word=src_word, trg_word=trg_word)
                        sum_cost, avg_cost, token_num = criterion(logits,
                                                                  lbl_word)
                        total_sum_cost += sum_cost.numpy()
                        total_token_num += token_num.numpy()
                        total_avg_cost = total_sum_cost / total_token_num
                    logger.info("validation, step_idx: %d, avg loss: %f, "
                                "normalized loss: %f, ppl: %f" %
                                (step_idx, total_avg_cost,
                                 total_avg_cost - loss_normalizer,
                                 np.exp([min(total_avg_cost, 100)])))
                transformer.train()
Z
Zeyu Chen 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

                if args.save_model and rank == 0:
                    model_dir = os.path.join(args.save_model,
                                             "step_" + str(step_idx))
                    if not os.path.exists(model_dir):
                        os.makedirs(model_dir)
                    paddle.save(transformer.state_dict(),
                                os.path.join(model_dir, "transformer.pdparams"))
                    paddle.save(optimizer.state_dict(),
                                os.path.join(model_dir, "transformer.pdopt"))
                batch_start = time.time()
            batch_id += 1
            step_idx += 1
            scheduler.step()

        train_epoch_cost = time.time() - epoch_start
        ce_time.append(train_epoch_cost)
        logger.info("train epoch: %d, epoch_cost: %.5f s" %
                    (pass_id, train_epoch_cost))

    if args.save_model and rank == 0:
        model_dir = os.path.join(args.save_model, "step_final")
        if not os.path.exists(model_dir):
            os.makedirs(model_dir)
        paddle.save(transformer.state_dict(),
                    os.path.join(model_dir, "transformer.pdparams"))
        paddle.save(optimizer.state_dict(),
                    os.path.join(model_dir, "transformer.pdopt"))


if __name__ == "__main__":
    ARGS = parse_args()
    yaml_file = ARGS.config
    with open(yaml_file, 'rt') as f:
        args = AttrDict(yaml.safe_load(f))
        pprint(args)

    do_train(args)