optimization.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimization and learning rate scheduling."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import re
import numpy as np
import paddle.fluid as fluid


def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps):
    """ Applies linear warmup of learning rate from 0 and decay to 0."""
    with fluid.default_main_program()._lr_schedule_guard():
        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="scheduled_learning_rate")

        global_step = fluid.layers.learning_rate_scheduler._decay_step_counter()

        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                warmup_lr = learning_rate * (global_step / warmup_steps)
                fluid.layers.tensor.assign(warmup_lr, lr)
            with switch.default():
                decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay(
                    learning_rate=learning_rate,
                    decay_steps=num_train_steps,
                    end_learning_rate=0.0,
                    power=1.0,
                    cycle=False)
                fluid.layers.tensor.assign(decayed_lr, lr)

        return lr


def optimization(loss,
                 warmup_steps,
                 num_train_steps,
                 learning_rate,
                 train_program,
                 startup_prog,
                 weight_decay,
                 lr_layer_decay_rate=1.0,
                 scheduler='linear_warmup_decay'):

    scheduled_lr = None
    if scheduler == 'noam_decay':
        if warmup_steps > 0:
            scheduled_lr = fluid.layers.learning_rate_scheduler\
             .noam_decay(1/(warmup_steps *(learning_rate ** 2)),
           warmup_steps)
        else:
            printf(
                "WARNING: noam decay should have postive warmup steps, using "
                "constant learning rate instead!")
            scheduled_lr = fluid.layers.create_global_var(
                name=fluid.unique_name.generate("learning_rate"),
                shape=[1],
                value=learning_rate,
                dtype='float32',
                persistable=True)
    elif scheduler == 'linear_warmup_decay':
        scheduled_lr = linear_warmup_decay(learning_rate, warmup_steps,
                                           num_train_steps)
    else:
        raise ValueError("Unkown learning rate scheduler, should be "
                         "'noam_decay' or 'linear_warmup_decay'")

    if lr_layer_decay_rate != 1.0:
        n_layer = 0
        for param in fluid.default_main_program().block(0).all_parameters():
            m = re.search(r"model_transformer_layer_(\d+?)_", param.name)
            if not m: continue
            n_layer = max(n_layer, int(m.group(1)) + 1)

        for param in fluid.default_main_program().block(0).all_parameters():
            for l in range(n_layer):
                if "model_transformer_layer_{}_".format(l) in param.name:
                    param.optimize_attr[
                        'learning_rate'] = lr_layer_decay_rate**(
                            n_layer - 1 - l)
                    print("Apply lr decay {:.4f} to layer-{} grad of {}".format(
                        param.optimize_attr['learning_rate'], l, param.name))
                    break

    def exclude_from_weight_decay(param):
        name = param.name.rstrip(".master")
        if name.find("layer_norm") > -1:
            return True
        bias_suffix = ["_bias", "_b", ".b_0"]
        for suffix in bias_suffix:
            if name.endswith(suffix):
                return True
        return False

    optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr)

    fluid.clip.set_gradient_clip(
        clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0))

    param_list = dict()

    if weight_decay > 0:
        for param in train_program.global_block().all_parameters():
            param_list[param.name] = param * 1.0
            param_list[param.name].stop_gradient = True

    _, param_grads = optimizer.minimize(loss)

    if weight_decay > 0:
        for param, grad in param_grads:
            if exclude_from_weight_decay(param):
                continue
            with param.block.program._optimized_guard(
                [param, grad]), fluid.framework.name_scope("weight_decay"):
                updated_param = param - param_list[
                    param.name] * weight_decay * scheduled_lr
                fluid.layers.assign(output=param, input=updated_param)

    return scheduled_lr