feed_generator.py 2.8 KB
Newer Older
C
Chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#!/usr/bin/python
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

C
Chengmo 已提交
16 17 18 19
# There are 13 integer features and 26 categorical features
continous_features = range(1, 14)
categorial_features = range(14, 40)
continous_clip = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]
20

21

C
Chengmo 已提交
22
class CriteoDataset(object):
23 24
    def __init__(self, sparse_feature_dim):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Z
zhang wenhui 已提交
25 26 27 28 29 30
        self.cont_max_ = [
            20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
        ]
        self.cont_diff_ = [
            20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
        ]
31
        self.hash_dim_ = sparse_feature_dim
D
dongdaxiang 已提交
32
        # here, training data are lines with line_index < train_idx_
33 34 35 36
        self.train_idx_ = 41256555
        self.continuous_range_ = range(1, 14)
        self.categorical_range_ = range(14, 40)

D
dongdaxiang 已提交
37
    def _reader_creator(self, file_list, is_train, trainer_num, trainer_id):
38 39 40 41 42 43 44 45 46 47 48 49 50
        def reader():
            for file in file_list:
                with open(file, 'r') as f:
                    line_idx = 0
                    for line in f:
                        line_idx += 1
                        features = line.rstrip('\n').split('\t')
                        dense_feature = []
                        sparse_feature = []
                        for idx in self.continuous_range_:
                            if features[idx] == '':
                                dense_feature.append(0.0)
                            else:
C
Chengmo 已提交
51 52 53 54
                                dense_feature.append(
                                    (float(features[idx]) -
                                     self.cont_min_[idx - 1]) /
                                    self.cont_diff_[idx - 1])
55
                        for idx in self.categorical_range_:
Z
zhang wenhui 已提交
56
                            sparse_feature.append([
C
Chengmo 已提交
57
                                hash(str(idx) + features[idx]) % self.hash_dim_
Z
zhang wenhui 已提交
58
                            ])
59 60 61

                        label = [int(features[0])]
                        yield [dense_feature] + sparse_feature + [label]
Z
zhang wenhui 已提交
62

63 64
        return reader

D
dongdaxiang 已提交
65 66
    def train(self, file_list, trainer_num, trainer_id):
        return self._reader_creator(file_list, True, trainer_num, trainer_id)
67 68

    def test(self, file_list):
Q
Qiao Longfei 已提交
69
        return self._reader_creator(file_list, False, 1, 0)