map_utils.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sys
import numpy as np
import logging
logger = logging.getLogger(__name__)

__all__ = [
    'bbox_area', 'jaccard_overlap', 'DetectionMAP'
]


def bbox_area(bbox, is_bbox_normalized):
    """
    Calculate area of a bounding box
    """
    norm = 1. - float(is_bbox_normalized)
    width = bbox[2] - bbox[0] + norm
    height = bbox[3] - bbox[1] + norm
    return width * height


def jaccard_overlap(pred, gt, is_bbox_normalized=False):
    """
    Calculate jaccard overlap ratio between two bounding box
    """
    if pred[0] >= gt[2] or pred[2] <= gt[0] or \
        pred[1] >= gt[3] or pred[3] <= gt[1]:
        return 0.
    inter_xmin = max(pred[0], gt[0])
    inter_ymin = max(pred[1], gt[1])
    inter_xmax = min(pred[2], gt[2])
    inter_ymax = min(pred[3], gt[3])
    inter_size = bbox_area([inter_xmin, inter_ymin,
                            inter_xmax, inter_ymax],
                            is_bbox_normalized)
    pred_size = bbox_area(pred, is_bbox_normalized)
    gt_size = bbox_area(gt, is_bbox_normalized)
    overlap = float(inter_size) / (
        pred_size + gt_size - inter_size)
    return overlap


class DetectionMAP(object):
    """
    Calculate detection mean average precision.
    Currently support two types: 11point and integral

    Args:
        class_num (int): the class number.
        overlap_thresh (float): The threshold of overlap
            ratio between prediction bounding box and 
            ground truth bounding box for deciding 
            true/false positive. Default 0.5.
        map_type (str): calculation method of mean average
            precision, currently support '11point' and
            'integral'. Default '11point'.
        is_bbox_normalized (bool): whther bounding boxes
            is normalized to range[0, 1]. Default False.
        evaluate_difficult (bool): whether to evaluate
            difficult bounding boxes. Default False.
    """

    def __init__(self,
                 class_num,
                 overlap_thresh=0.5,
                 map_type='11point',
                 is_bbox_normalized=False,
                 evaluate_difficult=False):
        self.class_num = class_num
        self.overlap_thresh = overlap_thresh
        assert map_type in ['11point', 'integral'], \
                "map_type currently only support '11point' "\
                "and 'integral'"
        self.map_type = map_type
        self.is_bbox_normalized = is_bbox_normalized
        self.evaluate_difficult = evaluate_difficult
        self.reset()

    def update(self, bbox, gt_box, gt_label, difficult=None):
        """
        Update metric statics from given prediction and ground
        truth infomations.
        """
        if difficult is None:
            difficult = np.zeros_like(gt_label)

        # record class gt count
        for gtl, diff in zip(gt_label, difficult):
            if self.evaluate_difficult or int(diff) == 0:
                self.class_gt_counts[int(gtl[0])] += 1

        # record class score positive
        visited = [False] * len(gt_label)
        for b in bbox:
            label, score, xmin, ymin, xmax, ymax = b.tolist()
            pred = [xmin, ymin, xmax, ymax]
            max_idx = -1
            max_overlap = -1.0
            for i, gl in enumerate(gt_label):
                if int(gl) == int(label):
                    overlap = jaccard_overlap(pred, gt_box[i],
                                    self.is_bbox_normalized)
                    if overlap > max_overlap:
                        max_overlap = overlap
                        max_idx = i

            if max_overlap > self.overlap_thresh:
                if self.evaluate_difficult or \
                        int(difficult[max_idx]) == 0:
                    if not visited[max_idx]:
                        self.class_score_poss[
                                int(label)].append([score, 1.0])
                        visited[max_idx] = True
                    else:
                        self.class_score_poss[
                                int(label)].append([score, 0.0])
            else:
                self.class_score_poss[
                        int(label)].append([score, 0.0])
    
    def reset(self):
        """
        Reset metric statics
        """
        self.class_score_poss = [[] for _ in range(self.class_num)]
        self.class_gt_counts = [0] * self.class_num
        self.mAP = None

    def accumulate(self):
        """
        Accumulate metric results and calculate mAP
        """
        mAP = 0.
        valid_cnt = 0
        for score_pos, count in zip(self.class_score_poss, 
                                    self.class_gt_counts):
            if count == 0 or len(score_pos) == 0:
                continue

            accum_tp_list, accum_fp_list = \
                    self._get_tp_fp_accum(score_pos)
            precision = []
            recall = []
            for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
                precision.append(float(ac_tp) / (ac_tp + ac_fp))
                recall.append(float(ac_tp) / count)

            if self.map_type == '11point':
                max_precisions = [0.] * 11
                start_idx = len(precision) - 1
                for j in range(10, -1, -1):
                    for i in range(start_idx, -1, -1):
                        if recall[i] < float(j) / 10.:
                            start_idx = i
                            if j > 0:
                                max_precisions[j - 1] = max_precisions[j]
                                break
                        else:
                            if max_precisions[j] < precision[i]:
                                max_precisions[j] = precision[i]
                mAP += sum(max_precisions) / 11. 
                valid_cnt += 1
            elif self.map_type == 'integral':
                import math
                ap = 0.
                prev_recall = 0.
                for i in range(len(precision)):
                    recall_gap = math.fabs(recall[i] - prev_recall)
                    if recall_gap > 1e-6:
                        ap += precision[i] * recall_gap
                        prev_recall = recall[i]
                mAP += ap
                valid_cnt += 1
            else:
                logger.error("Unspported mAP type {}".format(map_type))
                sys.exit(1)

        self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP

    def get_map(self):
        """
        Get mAP result
        """
        if self.mAP is None:
            logger.error("mAP is not calculated.")
        return self.mAP

    def _get_tp_fp_accum(self, score_pos_list):
        """
        Calculate accumulating true/false positive results from
        [score, pos] records
        """
        sorted_list = sorted(score_pos_list, 
                             key=lambda s: s[0], 
                             reverse=True)
        accum_tp = 0
        accum_fp = 0
        accum_tp_list = []
        accum_fp_list = []
        for (score, pos) in sorted_list:
            accum_tp += int(pos)
            accum_tp_list.append(accum_tp)
            accum_fp += 1 - int(pos)
            accum_fp_list.append(accum_fp)
        return accum_tp_list, accum_fp_list