reader.py 4.9 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
Leon 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
import os
import math
import random
import functools
import numpy as np
import paddle
import cv2
import io

random.seed(0)
np.random.seed(0)

THREAD = 8
BUF_SIZE = 128

img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))

def rotate_image(img):
    """ rotate_image """
    (h, w) = img.shape[:2]
    center = (w / 2, h / 2)
    angle = np.random.randint(-10, 11)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(img, M, (w, h))
    return rotated

def random_crop(img, size, scale=None, ratio=None):
    """ random_crop """
    scale = [0.08, 1.0] if scale is None else scale
    ratio = [3. / 4., 4. / 3.] if ratio is None else ratio

    aspect_ratio = math.sqrt(np.random.uniform(*ratio))
    w = 1. * aspect_ratio
    h = 1. / aspect_ratio

    bound = min((float(img.shape[1]) / img.shape[0]) / (w ** 2),
                (float(img.shape[0]) / img.shape[1]) / (h ** 2))
    scale_max = min(scale[1], bound)
    scale_min = min(scale[0], bound)

    target_area = img.shape[0] * img.shape[1] * np.random.uniform(scale_min,
                                                             scale_max)
    target_size = math.sqrt(target_area)
    w = int(target_size * w)
    h = int(target_size * h)

    i = np.random.randint(0, img.size[0] - w + 1)
    j = np.random.randint(0, img.size[1] - h + 1)

    img = img[i:i+h, j:j+w, :]
    resized = cv2.resize(img, (size, size),
                         interpolation=cv2.INTER_CUBIC
                        )
    return resized

def distort_color(img):
    return img

def resize_short(img, target_size):
    """ resize_short """
    percent = float(target_size) / min(img.shape[0], img.shape[1])
    resized_width = int(round(img.shape[1] * percent))
    resized_height = int(round(img.shape[0] * percent))
    resized = cv2.resize(img, (resized_width, resized_height),
                         interpolation=cv2.INTER_CUBIC
                        )
    return resized

def crop_image(img, target_size, center):
    """ crop_image """
    height, width = img.shape[:2]
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img[h_start:h_end, w_start:w_end, :]
    return img

def process_image(sample, mode, color_jitter, rotate,
        crop_size=224, mean=None, std=None):
    """ process_image """

    mean = [0.485, 0.456, 0.406] if mean is None else mean
    std = [0.229, 0.224, 0.225] if std is None else std


    img_path = sample[0]
    img = cv2.imread(img_path)
    img = cv2.resize(img, (crop_size, crop_size))

    img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
    img_mean = np.array(mean).reshape((3, 1, 1))
    img_std = np.array(std).reshape((3, 1, 1))
    img -= img_mean
    img /= img_std

    return (img, )

def image_mapper(**kwargs):
    """ image_mapper """
    return functools.partial(process_image, **kwargs)

def _reader_creator(file_list,
                    mode,
                    shuffle=False,
                    color_jitter=False,
                    rotate=False,
                    data_dir=None,
                    crop_size=224):
    def reader():

        with open(file_list) as flist:
            full_lines = [line.strip() for line in flist]
            if shuffle:
                np.random.shuffle(lines)
            lines = full_lines
            for line in lines:
                img_path, label = line.strip().split()
                img_path = os.path.join(data_dir, img_path)
                yield [img_path]


    image_mapper = functools.partial(process_image,
            mode=mode, color_jitter=color_jitter, rotate=rotate, crop_size=crop_size)
    reader = paddle.reader.xmap_readers(
            image_mapper, reader, THREAD, BUF_SIZE, order=True)
    return reader

def create_img_reader(args):
    def reader():
        img_path = args.img_path
        yield [img_path]
    return reader

def test(settings, crop_size):
    file_list = settings.img_list
    data_dir = settings.img_path
    return _reader_creator(file_list, 'test', shuffle=False, data_dir=data_dir, crop_size=crop_size)