infer_recognition.py 9.8 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
K
Kaibing Chen 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
import os
import sys
sys.path.append('./so')
import time

import cv2
import numpy as np

from ConfigParser import ConfigParser
from PyCNNPredict import PyCNNPredict

#infer detector
def det_preprocessor(im, new_size, max_size):
    im = im.astype(np.float32, copy=False)
    img_mean = [0.485, 0.456, 0.406]
    img_std = [0.229, 0.224, 0.225]
    im = im[:, :, ::-1]
    im = im / 255
    im -= img_mean
    im /= img_std
    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])  
    im_scale = float(new_size) / float(im_size_min)  
    # Prevent the biggest axis from being more than max_size
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR)
    channel_swap = (2, 0, 1)  #(batch, channel, height, width)
    im = im.transpose(channel_swap)
    return im, im_scale

def nms(dets, thresh):
    """nms"""
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    dt_num = dets.shape[0]
    order = np.array(range(dt_num))

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        inds = np.where(ovr <= thresh)[0]
        order = order[inds + 1]
    return keep

def box_decoder(deltas, boxes, weights):
    boxes = boxes.astype(deltas.dtype, copy=False)
    widths = boxes[:, 2] - boxes[:, 0] + 1.0
    heights = boxes[:, 3] - boxes[:, 1] + 1.0
    ctr_x = boxes[:, 0] + 0.5 * widths
    ctr_y = boxes[:, 1] + 0.5 * heights
    wx, wy, ww, wh = weights
    dx = deltas[:, 0::4] * wx
    dy = deltas[:, 1::4] * wy
    dw = deltas[:, 2::4] * ww
    dh = deltas[:, 3::4] * wh
    # Prevent sending too large values into np.exp()
    clip_value = np.log(1000. / 16.)
    dw = np.minimum(dw, clip_value)
    dh = np.minimum(dh, clip_value)
    pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
    pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
    pred_w = np.exp(dw) * widths[:, np.newaxis]
    pred_h = np.exp(dh) * heights[:, np.newaxis]
    pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype)
    # x1
    pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
    # y1
    pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
    # x2 (note: "- 1" is correct; don't be fooled by the asymmetry)
    pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1
    # y2 (note: "- 1" is correct; don't be fooled by the asymmetry)
    pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1
    return pred_boxes

def clip_tiled_boxes(boxes, im_shape):
    """Clip boxes to image boundaries. im_shape is [height, width] and boxes
    has shape (N, 4 * num_tiled_boxes)."""
    # x1 >= 0
    boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
    # y1 >= 0
    boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
    # x2 < im_shape[1]
    boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
    # y2 < im_shape[0]
    boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
    return boxes

def get_dt_res_common(rpn_rois_v, confs_v, locs_v, class_nums, im_info, im_id):
    dts_res = []
    if len(rpn_rois_v) == 0:
        return None
    variance_v = np.array([0.1, 0.1, 0.2, 0.2])
    img_height, img_width, img_scale = im_info
    tmp_v = box_decoder(locs_v, rpn_rois_v, variance_v)
    tmp_v = clip_tiled_boxes(tmp_v, [img_height, img_width])
    decoded_box_v = tmp_v / img_scale

    cls_boxes = [[] for _ in range(class_nums)]
    for j in range(1, class_nums):
        inds = np.where(confs_v[:, j] >= 0.1)[0]
        scores_j = confs_v[inds, j]
        rois_j = decoded_box_v[inds, j * 4:(j + 1) * 4]
        dets_j = np.hstack((rois_j, scores_j[:, np.newaxis])).astype(np.float32, copy=False)
        cls_rank = np.argsort(-dets_j[:, -1])
        dets_j = dets_j[cls_rank]
        keep = nms(dets_j, 0.5)
        nms_dets = dets_j[keep, :]
        cls_boxes[j] = nms_dets

    # Limit to max_per_image detections **over all classes**
    image_scores = np.hstack([cls_boxes[j][:, -1] for j in range(1, class_nums)])
    if len(image_scores) > 100:
        image_thresh = np.sort(image_scores)[-100]
        for j in range(1, class_nums):
            keep = np.where(cls_boxes[j][:, -1] >= image_thresh)[0]
            cls_boxes[j] = cls_boxes[j][keep, :]
    for j in range(1, class_nums):
        for dt in cls_boxes[j]:
            xmin, ymin, xmax, ymax, score = dt.tolist()
            w = xmax - xmin + 1
            h = ymax - ymin + 1
            bbox = [xmin, ymin, w, h]
            dt_res = {
                'image_id': im_id,
                'category_id': j,
                'bbox': bbox,
                'score': score
            }
            dts_res.append(dt_res)
    return dts_res

def test_det(img_path):
    conf_file = './conf/paddle-det.conf'
    prefix = 'paddle-classify_'
    conf = loadconfig(conf_file)
    det_prefix = 'paddle-det'
    class_nums = conf.getint(det_prefix, 'class_nums')
    new_size = conf.getfloat(det_prefix, 'new_size')
    max_size = conf.getfloat(det_prefix, 'max_size')
    predictor = PyCNNPredict()
    predictor.init(conf_file, prefix)
    im = cv2.imread(img_path)
    if im is None:
        print("image doesn't exist!")
        sys.exit(-1) 
    img_height_ori = im.shape[0]
    img_width_ori = im.shape[1]
    im, im_scale = det_preprocessor(im, new_size, max_size)
    im_height = np.round(img_height_ori * im_scale)
    im_width = np.round(img_width_ori * im_scale) 
    im_info = np.array([im_height, im_width, im_scale], dtype=np.float32)
    im_data_shape = np.array([1, im.shape[0], im.shape[1], im.shape[2]])
    im_info_shape = np.array([1, 3])
    im = im.flatten().astype(np.float32)
    im_info = im_info.flatten().astype(np.float32)
    inputdatas = [im, im_info]
    inputshapes = [im_data_shape.astype(np.int32), im_info_shape.astype(np.int32)]
    for ino in range(2):
        starttime = time.time() 
        res = predictor.predict(inputdatas, inputshapes, [])
        rpn_rois_v = res[0][0].reshape(-1, 4)
        confs_v = res[0][1].reshape(-1, class_nums)
        locs_v = res[0][2].reshape(-1, class_nums * 4)
        dts_res = get_dt_res_common(rpn_rois_v, confs_v, locs_v, class_nums, im_info, 0)
        print("Time:%.3f" % (time.time() - starttime))
    print(dts_res)

##infer cls 
def normwidth(size, margin=32):
    outsize = size // margin * margin
    return outsize


def loadconfig(configurefile):
    "load config from file"
    config = ConfigParser()
    config.readfp(open(configurefile, 'r'))
    return config


def resize_short(img, target_size):
    """ resize_short """
    percent = float(target_size) / min(img.shape[0], img.shape[1])
    resized_width = int(round(img.shape[1] * percent))
    resized_height = int(round(img.shape[0] * percent))

    resized_width = normwidth(resized_width)
    resized_height = normwidth(resized_height)
    resized = cv2.resize(img, (resized_width, resized_height))
    return resized


def crop_image(img, target_size, center):
    """ crop_image """
    height, width = img.shape[:2]
    size = target_size
    if center == True:
        w_start = (width - size) / 2
        h_start = (height - size) / 2
    else:
        w_start = random.randint(0, width - size)
        h_start = random.randint(0, height - size)
    w_end = w_start + size
    h_end = h_start + size
    img = img[h_start:h_end, w_start:w_end, :]
    return img


def cls_preprocessor(im, new_size):
    img_mean = [0.485, 0.456, 0.406]
    img_std = [0.229, 0.224, 0.225]

    img = resize_short(im, 224)
    img = crop_image(img, target_size=224, center=True)

    img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
    img_mean = np.array(img_mean).reshape((3, 1, 1))
    img_std = np.array(img_std).reshape((3, 1, 1))
    img -= img_mean
    img /= img_std
    return img


def test_cls(img_path, model_name):
    conf_file = './conf/paddle-cls.conf'
    prefix = model_name + "_"
    conf = loadconfig(conf_file)
    predictor = PyCNNPredict()
    predictor.init(conf_file, prefix)
    im = cv2.imread(img_path)
    if im is None:
        print("image doesn't exist!")
        sys.exit(-1)
    im = cls_preprocessor(im, 224)
    im_data_shape = np.array([1, im.shape[0], im.shape[1], im.shape[2]])
    im = im.flatten().astype(np.float32)
    inputdatas = [im]
    inputshapes = [im_data_shape.astype(np.int32)]
    for ino in range(5):
        starttime = time.time()
        res = predictor.predict(inputdatas, inputshapes, [])
        print "Time:", time.time() - starttime 

    result = res[0][0]
    pred_label = np.argsort(result)[::-1][:1]
    
    print(pred_label)
    print(result[pred_label])

if __name__ == "__main__":
    if len(sys.argv)>1 :
        func = getattr(sys.modules[__name__], sys.argv[1])
        func(*sys.argv[2:])
    else:
        print >> sys.stderr,'tools.py command'