convert_binary_model.py 3.1 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
K
Kaibing Chen 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import argparse
import functools
import paddle
import paddle.fluid as fluid
import models
from utility import add_arguments, print_arguments

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('model', str, "ResNet200_vd", "Set the network to use.")
add_arg('embedding_size', int, 512, "Embedding size.")
add_arg('image_shape', str, "3,448,448", "Input image size.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
add_arg('binary_model', str, None, "Set binary_model dir")
add_arg('task_mode', str, "retrieval", "Set task mode")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def convert(args):
    # parameters from arguments
    model_name = args.model
    pretrained_model = args.pretrained_model
    if not os.path.exists(pretrained_model):
        print("pretrained_model doesn't exist!")
        sys.exit(-1) 
    image_shape = [int(m) for m in args.image_shape.split(",")]

    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')

    # model definition
    model = models.__dict__[model_name]()
    if args.task_mode == 'retrieval':
        out = model.net(input=image, embedding_size=args.embedding_size)
    else:
        out = model.net(input=image)
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    def if_exist(var):
        return os.path.exists(os.path.join(pretrained_model, var.name))
    fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)

    fluid.io.save_inference_model(
        dirname = args.binary_model,
        feeded_var_names = ['image'],
        target_vars = [out['embedding']] if args.task_mode == 'retrieval' else [out],
        executor = exe,
        main_program = None,
        model_filename = 'model',
        params_filename = 'params')

    print('input_name: {}'.format('image'))
    print('output_name: {}'.format(out['embedding'].name)) if args.task_mode == 'retrieval' else ('output_name: {}'.format(out.name))
    print("convert done.")


def main():
    args = parser.parse_args()
    print_arguments(args)
    convert(args)


if __name__ == '__main__':
    main()