freeze.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import multiprocessing
import numpy as np
import datetime
from collections import deque
import sys
sys.path.append("../../")
from paddle.fluid.contrib.slim import Compressor
from paddle.fluid.framework import IrGraph
from paddle.fluid import core
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass
from paddle.fluid.contrib.slim.quantization import TransformForMobilePass

35

36 37 38 39 40
def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)

41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.data.data_feed import create_reader

from ppdet.utils.eval_utils import parse_fetches, eval_results
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu
import ppdet.utils.checkpoint as checkpoint
from ppdet.modeling.model_input import create_feed

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
64 65


66 67 68 69 70 71 72 73 74 75 76 77
def eval_run(exe, compile_program, reader, keys, values, cls, test_feed):
    """
    Run evaluation program, return program outputs.
    """
    iter_id = 0
    results = []

    images_num = 0
    start_time = time.time()
    has_bbox = 'bbox' in keys
    for data in reader():
        data = test_feed.feed(data)
78
        feed_data = {'image': data['image'], 'im_size': data['im_size']}
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        outs = exe.run(compile_program,
                       feed=feed_data,
                       fetch_list=values[0],
                       return_numpy=False)
        outs.append(data['gt_box'])
        outs.append(data['gt_label'])
        outs.append(data['is_difficult'])
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(keys, outs)
        }
        results.append(res)
        if iter_id % 100 == 0:
            logger.info('Test iter {}'.format(iter_id))
        iter_id += 1
        images_num += len(res['bbox'][1][0]) if has_bbox else 1
    logger.info('Test finish iter {}'.format(iter_id))

    end_time = time.time()
    fps = images_num / (end_time - start_time)
    if has_bbox:
        logger.info('Total number of images: {}, inference time: {} fps.'.
                    format(images_num, fps))
    else:
        logger.info('Total iteration: {}, inference time: {} batch/s.'.format(
            images_num, fps))

    return results


def main():
    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)
    if 'log_iter' not in cfg:
        cfg.log_iter = 20

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)

    if cfg.use_gpu:
        devices_num = fluid.core.get_cuda_device_count()
    else:
        devices_num = int(
            os.environ.get('CPU_NUM', multiprocessing.cpu_count()))

    if 'eval_feed' not in cfg:
        eval_feed = create(main_arch + 'EvalFeed')
    else:
        eval_feed = create(cfg.eval_feed)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

137
    _, test_feed_vars = create_feed(eval_feed, False)
138 139 140 141 142 143 144

    eval_reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir)
    #eval_pyreader.decorate_sample_list_generator(eval_reader, place)
    test_data_feed = fluid.DataFeeder(test_feed_vars.values(), place)

    assert os.path.exists(FLAGS.model_path)
    infer_prog, feed_names, fetch_targets = fluid.io.load_inference_model(
145 146 147 148
        dirname=FLAGS.model_path,
        executor=exe,
        model_filename='__model__.infer',
        params_filename='__params__')
149 150

    eval_keys = ['bbox', 'gt_box', 'gt_label', 'is_difficult']
151 152 153
    eval_values = [
        'multiclass_nms_0.tmp_0', 'gt_box', 'gt_label', 'is_difficult'
    ]
154 155 156
    eval_cls = []
    eval_values[0] = fetch_targets[0]

157 158
    results = eval_run(exe, infer_prog, eval_reader, eval_keys, eval_values,
                       eval_cls, test_data_feed)
159 160 161 162 163

    resolution = None
    if 'mask' in results[0]:
        resolution = model.mask_head.resolution
    box_ap_stats = eval_results(results, eval_feed, cfg.metric, cfg.num_classes,
164
                                resolution, False, FLAGS.output_eval)
165 166 167 168 169

    logger.info("freeze the graph for inference")
    test_graph = IrGraph(core.Graph(infer_prog.desc), for_test=True)

    freeze_pass = QuantizationFreezePass(
170 171 172
        scope=fluid.global_scope(),
        place=place,
        weight_quantize_type=FLAGS.weight_quant_type)
173 174 175
    freeze_pass.apply(test_graph)
    server_program = test_graph.to_program()
    fluid.io.save_inference_model(
176 177 178 179 180 181 182
        dirname=os.path.join(FLAGS.save_path, 'float'),
        feeded_var_names=feed_names,
        target_vars=fetch_targets,
        executor=exe,
        main_program=server_program,
        model_filename='model',
        params_filename='weights')
183 184 185

    logger.info("convert the weights into int8 type")
    convert_int8_pass = ConvertToInt8Pass(
186
        scope=fluid.global_scope(), place=place)
187 188 189
    convert_int8_pass.apply(test_graph)
    server_int8_program = test_graph.to_program()
    fluid.io.save_inference_model(
190 191 192 193 194 195 196
        dirname=os.path.join(FLAGS.save_path, 'int8'),
        feeded_var_names=feed_names,
        target_vars=fetch_targets,
        executor=exe,
        main_program=server_int8_program,
        model_filename='model',
        params_filename='weights')
197 198 199 200 201


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
202
        "-m", "--model_path", default=None, type=str, help="path of checkpoint")
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "-d",
        "--dataset_dir",
        default=None,
        type=str,
        help="Dataset path, same as DataFeed.dataset.dataset_dir")
    parser.add_argument(
        "--weight_quant_type",
        default='abs_max',
        type=str,
        help="quantization type for weight")
    parser.add_argument(
        "--save_path",
        default='./output',
        type=str,
        help="path to save quantization inference model")

    FLAGS = parser.parse_args()
    main()