infer.py 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import glob
22
import time
23 24 25 26 27

import numpy as np
from PIL import Image
sys.path.append("../../")

28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid
from ppdet.utils.cli import print_total_cfg
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.modeling.model_input import create_feed
from ppdet.data.data_feed import create_reader

from ppdet.utils.eval_utils import parse_fetches
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu
from ppdet.utils.visualizer import visualize_results
import ppdet.utils.checkpoint as checkpoint

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def get_save_image_name(output_dir, image_path):
    """
    Get save image name from source image path.
    """
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    image_name = os.path.split(image_path)[-1]
    name, ext = os.path.splitext(image_name)
    return os.path.join(output_dir, "{}".format(name)) + ext


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
    images = []

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        images.append(infer_img)
        return images

    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.extend(glob.glob('{}/*.{}'.format(infer_dir, ext)))

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    logger.info("Found {} inference images in total.".format(len(images)))

    return images


def main():
    cfg = load_config(FLAGS.config)

    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
    # print_total_cfg(cfg)

    if 'test_feed' not in cfg:
        test_feed = create(main_arch + 'TestFeed')
    else:
        test_feed = create(cfg.test_feed)

    test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
    test_feed.dataset.add_images(test_images)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    infer_prog, feed_var_names, fetch_list = fluid.io.load_inference_model(
127 128 129 130
        dirname=FLAGS.model_path,
        model_filename=FLAGS.model_name,
        params_filename=FLAGS.params_name,
        executor=exe)
131 132

    reader = create_reader(test_feed)
133 134
    feeder = fluid.DataFeeder(
        place=place, feed_list=feed_var_names, program=infer_prog)
135 136 137 138 139 140 141 142 143

    # parse infer fetches
    assert cfg.metric in ['COCO', 'VOC'], \
            "unknown metric type {}".format(cfg.metric)
    extra_keys = []
    if cfg['metric'] == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg['metric'] == 'VOC':
        extra_keys = ['im_id', 'im_shape']
144 145 146
    keys, values, _ = parse_fetches({
        'bbox': fetch_list
    }, infer_prog, extra_keys)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

    # parse dataset category
    if cfg.metric == 'COCO':
        from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
    if cfg.metric == "VOC":
        from ppdet.utils.voc_eval import bbox2out, get_category_info

    anno_file = getattr(test_feed.dataset, 'annotation', None)
    with_background = getattr(test_feed, 'with_background', True)
    use_default_label = getattr(test_feed, 'use_default_label', False)
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False

    # use tb-paddle to log image
    if FLAGS.use_tb:
        from tb_paddle import SummaryWriter
        tb_writer = SummaryWriter(FLAGS.tb_log_dir)
        tb_image_step = 0
        tb_image_frame = 0  # each frame can display ten pictures at most. 

    imid2path = reader.imid2path
    keys = ['bbox']
172 173 174
    infer_time = True
    compile_prog = fluid.compiler.CompiledProgram(infer_prog)

175 176
    for iter_id, data in enumerate(reader()):
        feed_data = [[d[0], d[1]] for d in data]
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        # for infer time
        if infer_time:
            warmup_times = 10
            repeats_time = 100
            feed_data_dict = feeder.feed(feed_data)
            for i in range(warmup_times):
                exe.run(compile_prog,
                        feed=feed_data_dict,
                        fetch_list=fetch_list,
                        return_numpy=False)
            start_time = time.time()
            for i in range(repeats_time):
                exe.run(compile_prog,
                        feed=feed_data_dict,
                        fetch_list=fetch_list,
                        return_numpy=False)

            print("infer time: {} ms/sample".format((time.time() - start_time) *
                                                    1000 / repeats_time))
            infer_time = False

        outs = exe.run(compile_prog,
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                       feed=feeder.feed(feed_data),
                       fetch_list=fetch_list,
                       return_numpy=False)
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(keys, outs)
        }
        res['im_id'] = [[d[2] for d in data]]
        logger.info('Infer iter {}'.format(iter_id))

        bbox_results = None
        mask_results = None
        if 'bbox' in res:
            bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
        if 'mask' in res:
            mask_results = mask2out([res], clsid2catid,
                                    model.mask_head.resolution)

        # visualize result
        im_ids = res['im_id'][0]
        for im_id in im_ids:
            image_path = imid2path[int(im_id)]
            image = Image.open(image_path).convert('RGB')

            # use tb-paddle to log original image           
            if FLAGS.use_tb:
                original_image_np = np.array(image)
                tb_writer.add_image(
                    "original/frame_{}".format(tb_image_frame),
                    original_image_np,
                    tb_image_step,
                    dataformats='HWC')

            image = visualize_results(image,
                                      int(im_id), catid2name,
                                      FLAGS.draw_threshold, bbox_results,
                                      mask_results)

            # use tb-paddle to log image with bbox
            if FLAGS.use_tb:
                infer_image_np = np.array(image)
                tb_writer.add_image(
                    "bbox/frame_{}".format(tb_image_frame),
                    infer_image_np,
                    tb_image_step,
                    dataformats='HWC')
                tb_image_step += 1
                if tb_image_step % 10 == 0:
                    tb_image_step = 0
                    tb_image_frame += 1

            save_name = get_save_image_name(FLAGS.output_dir, image_path)
            logger.info("Detection bbox results save in {}".format(save_name))
            image.save(save_name, quality=95)


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "--infer_dir",
        type=str,
        default=None,
        help="Directory for images to perform inference on.")
    parser.add_argument(
        "--infer_img",
        type=str,
        default=None,
        help="Image path, has higher priority over --infer_dir")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output visualization files.")
    parser.add_argument(
        "--draw_threshold",
        type=float,
        default=0.5,
        help="Threshold to reserve the result for visualization.")
    parser.add_argument(
        "--use_tb",
        type=bool,
        default=False,
        help="whether to record the data to Tensorboard.")
    parser.add_argument(
        '--tb_log_dir',
        type=str,
        default="tb_log_dir/image",
        help='Tensorboard logging directory for image.')
    parser.add_argument(
288
        '--model_path', type=str, default=None, help="inference model path")
289 290 291 292 293 294 295 296 297 298 299 300
    parser.add_argument(
        '--model_name',
        type=str,
        default='__model__.infer',
        help="model filename for inference model")
    parser.add_argument(
        '--params_name',
        type=str,
        default='__params__',
        help="params filename for inference model")
    FLAGS = parser.parse_args()
    main()