arrange_sample.py 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# function:
#    operators to process sample,
#    eg: decode/resize/crop image

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import numpy as np
from .operators import BaseOperator, register_op

logger = logging.getLogger(__name__)


@register_op
class ArrangeRCNN(BaseOperator):
    """
    Transform dict to tuple format needed for training.

    Args:
        is_mask (bool): whether to use include mask data
    """

    def __init__(self, is_mask=False):
        super(ArrangeRCNN, self).__init__()
        self.is_mask = is_mask
        assert isinstance(self.is_mask, bool), "wrong type for is_mask"

    def __call__(self, sample, context=None):
        """
        Args:
            sample: a dict which contains image
                    info and annotation info.
            context: a dict which contains additional info.
        Returns:
            sample: a tuple containing following items
                (image, im_info, im_id, gt_bbox, gt_class, is_crowd, gt_masks)
        """
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        keys = list(sample.keys())
        if 'is_crowd' in keys:
            is_crowd = sample['is_crowd']
        else:
            raise KeyError("The dataset doesn't have 'is_crowd' key.")
        if 'im_info' in keys:
            im_info = sample['im_info']
        else:
            raise KeyError("The dataset doesn't have 'im_info' key.")
        im_id = sample['im_id']

        outs = (im, im_info, im_id, gt_bbox, gt_class, is_crowd)
        gt_masks = []
        if self.is_mask and len(sample['gt_poly']) != 0 \
                and 'is_crowd' in keys:
            valid = True
            segms = sample['gt_poly']
            assert len(segms) == is_crowd.shape[0]
            for i in range(len(sample['gt_poly'])):
                segm, iscrowd = segms[i], is_crowd[i]
                gt_segm = []
                if iscrowd:
                    gt_segm.append([[0, 0]])
                else:
                    for poly in segm:
                        if len(poly) == 0:
                            valid = False
                            break
                        gt_segm.append(np.array(poly).reshape(-1, 2))
                if (not valid) or len(gt_segm) == 0:
                    break
                gt_masks.append(gt_segm)
            outs = outs + (gt_masks, )
        return outs


W
wangguanzhong 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
@register_op
class ArrangeEvalRCNN(BaseOperator):
    """
    Transform dict to the tuple format needed for evaluation.
    """

    def __init__(self):
        super(ArrangeEvalRCNN, self).__init__()

    def __call__(self, sample, context=None):
        """
        Args:
            sample: a dict which contains image
                    info and annotation info.
            context: a dict which contains additional info.
        Returns:
            sample: a tuple containing the following items:
                    (image, im_info, im_id, im_shape, gt_bbox,
                    gt_class, difficult)
        """
W
wangguanzhong 已提交
113 114 115 116 117
        ims = []
        keys = sorted(list(sample.keys()))
        for k in keys:
            if 'image' in k:
                ims.append(sample[k])
W
wangguanzhong 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        if 'im_info' in keys:
            im_info = sample['im_info']
        else:
            raise KeyError("The dataset doesn't have 'im_info' key.")
        im_id = sample['im_id']
        h = sample['h']
        w = sample['w']
        # For rcnn models in eval and infer stage, original image size
        # is needed to clip the bounding boxes. And box clip op in
        # bbox prediction needs im_info as input in format of [N, 3],
        # so im_shape is appended by 1 to match dimension.
        im_shape = np.array((h, w, 1), dtype=np.float32)
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
        difficult = sample['difficult']
W
wangguanzhong 已提交
133 134 135
        remain_list = [im_info, im_id, im_shape, gt_bbox, gt_class, difficult]
        ims.extend(remain_list)
        outs = tuple(ims)
W
wangguanzhong 已提交
136 137 138
        return outs


139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
@register_op
class ArrangeTestRCNN(BaseOperator):
    """
    Transform dict to the tuple format needed for training.
    """

    def __init__(self):
        super(ArrangeTestRCNN, self).__init__()

    def __call__(self, sample, context=None):
        """
        Args:
            sample: a dict which contains image
                    info and annotation info.
            context: a dict which contains additional info.
        Returns:
            sample: a tuple containing the following items:
W
wangguanzhong 已提交
156
                    (image, im_info, im_id, im_shape)
157
        """
W
wangguanzhong 已提交
158 159 160 161 162
        ims = []
        keys = sorted(list(sample.keys()))
        for k in keys:
            if 'image' in k:
                ims.append(sample[k])
163 164 165 166 167 168 169 170 171 172 173 174
        if 'im_info' in keys:
            im_info = sample['im_info']
        else:
            raise KeyError("The dataset doesn't have 'im_info' key.")
        im_id = sample['im_id']
        h = sample['h']
        w = sample['w']
        # For rcnn models in eval and infer stage, original image size
        # is needed to clip the bounding boxes. And box clip op in
        # bbox prediction needs im_info as input in format of [N, 3],
        # so im_shape is appended by 1 to match dimension.
        im_shape = np.array((h, w, 1), dtype=np.float32)
W
wangguanzhong 已提交
175 176 177
        remain_list = [im_info, im_id, im_shape]
        ims.extend(remain_list)
        outs = tuple(ims)
178 179 180 181 182 183 184 185 186
        return outs


@register_op
class ArrangeSSD(BaseOperator):
    """
    Transform dict to tuple format needed for training.
    """

187
    def __init__(self):
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        super(ArrangeSSD, self).__init__()

    def __call__(self, sample, context=None):
        """
        Args:
            sample: a dict which contains image
                    info and annotation info.
            context: a dict which contains additional info.
        Returns:
            sample: a tuple containing the following items:
                    (image, gt_bbox, gt_class, difficult)
        """
        im = sample['image']
        gt_bbox = sample['gt_bbox']
        gt_class = sample['gt_class']
203
        outs = (im, gt_bbox, gt_class)
204 205
        return outs

W
wangguanzhong 已提交
206

207 208 209 210 211 212
@register_op
class ArrangeEvalSSD(BaseOperator):
    """
    Transform dict to tuple format needed for training.
    """

213
    def __init__(self, fields):
214
        super(ArrangeEvalSSD, self).__init__()
215
        self.fields = fields
216 217 218 219 220 221 222 223 224 225

    def __call__(self, sample, context=None):
        """
        Args:
            sample: a dict which contains image
                    info and annotation info.
            context: a dict which contains additional info.
        Returns:
            sample: a tuple containing the following items: (image)
        """
226
        outs = []
227 228
        if len(sample['gt_bbox']) != len(sample['gt_class']):
            raise ValueError("gt num mismatch: bbox and class.")
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
        for field in self.fields:
            if field == 'im_shape':
                h = sample['h']
                w = sample['w']
                im_shape = np.array((h, w))
                outs.append(im_shape)
            elif field == 'is_difficult':
                outs.append(sample['difficult'])
            elif field == 'gt_box':
                outs.append(sample['gt_bbox'])
            elif field == 'gt_label':
                outs.append(sample['gt_class'])
            else:
                outs.append(sample[field])

        outs = tuple(outs)
245 246

        return outs
247

W
wangguanzhong 已提交
248

249 250 251 252 253 254 255 256 257
@register_op
class ArrangeTestSSD(BaseOperator):
    """
    Transform dict to tuple format needed for training.

    Args:
        is_mask (bool): whether to use include mask data
    """

258
    def __init__(self):
259 260 261 262 263 264 265 266 267 268 269 270
        super(ArrangeTestSSD, self).__init__()

    def __call__(self, sample, context=None):
        """
        Args:
            sample: a dict which contains image
                    info and annotation info.
            context: a dict which contains additional info.
        Returns:
            sample: a tuple containing the following items: (image)
        """
        im = sample['image']
K
Kaipeng Deng 已提交
271
        im_id = sample['im_id']
272 273 274 275
        h = sample['h']
        w = sample['w']
        im_shape = np.array((h, w))
        outs = (im, im_id, im_shape)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        return outs


@register_op
class ArrangeYOLO(BaseOperator):
    """
    Transform dict to the tuple format needed for training.
    """

    def __init__(self):
        super(ArrangeYOLO, self).__init__()

    def __call__(self, sample, context=None):
        """
        Args:
            sample: a dict which contains image
                    info and annotation info.
            context: a dict which contains additional info.
        Returns:
            sample: a tuple containing the following items:
                (image, gt_bbox, gt_class, gt_score,
                 is_crowd, im_info, gt_masks)
        """
        im = sample['image']
        if len(sample['gt_bbox']) != len(sample['gt_class']):
            raise ValueError("gt num mismatch: bbox and class.")
        if len(sample['gt_bbox']) != len(sample['gt_score']):
            raise ValueError("gt num mismatch: bbox and score.")
        gt_bbox = np.zeros((50, 4), dtype=im.dtype)
        gt_class = np.zeros((50, ), dtype=np.int32)
        gt_score = np.zeros((50, ), dtype=im.dtype)
        gt_num = min(50, len(sample['gt_bbox']))
        if gt_num > 0:
            gt_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
            gt_class[:gt_num] = sample['gt_class'][:gt_num, 0]
            gt_score[:gt_num] = sample['gt_score'][:gt_num, 0]
        # parse [x1, y1, x2, y2] to [x, y, w, h]
        gt_bbox[:, 2:4] = gt_bbox[:, 2:4] - gt_bbox[:, :2]
        gt_bbox[:, :2] = gt_bbox[:, :2] + gt_bbox[:, 2:4] / 2.
        outs = (im, gt_bbox, gt_class, gt_score)
        return outs


319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
@register_op
class ArrangeEvalYOLO(BaseOperator):
    """
    Transform dict to the tuple format needed for evaluation.
    """

    def __init__(self):
        super(ArrangeEvalYOLO, self).__init__()

    def __call__(self, sample, context=None):
        """
        Args:
            sample: a dict which contains image
                    info and annotation info.
            context: a dict which contains additional info.
        Returns:
            sample: a tuple containing the following items:
336 337
                (image, im_shape, im_id, gt_bbox, gt_class,
                 difficult)
338 339 340 341 342 343 344 345
        """
        im = sample['image']
        if len(sample['gt_bbox']) != len(sample['gt_class']):
            raise ValueError("gt num mismatch: bbox and class.")
        im_id = sample['im_id']
        h = sample['h']
        w = sample['w']
        im_shape = np.array((h, w))
346 347 348 349 350 351 352 353
        gt_bbox = np.zeros((50, 4), dtype=im.dtype)
        gt_class = np.zeros((50, ), dtype=np.int32)
        difficult = np.zeros((50, ), dtype=np.int32)
        gt_num = min(50, len(sample['gt_bbox']))
        if gt_num > 0:
            gt_bbox[:gt_num, :] = sample['gt_bbox'][:gt_num, :]
            gt_class[:gt_num] = sample['gt_class'][:gt_num, 0]
            difficult[:gt_num] = sample['difficult'][:gt_num, 0]
354 355 356 357
        outs = (im, im_shape, im_id, gt_bbox, gt_class, difficult)
        return outs


358 359 360
@register_op
class ArrangeTestYOLO(BaseOperator):
    """
361
    Transform dict to the tuple format needed for inference.
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    """

    def __init__(self):
        super(ArrangeTestYOLO, self).__init__()

    def __call__(self, sample, context=None):
        """
        Args:
            sample: a dict which contains image
                    info and annotation info.
            context: a dict which contains additional info.
        Returns:
            sample: a tuple containing the following items:
                (image, gt_bbox, gt_class, gt_score, is_crowd,
                 im_info, gt_masks)
        """
        im = sample['image']
        im_id = sample['im_id']
        h = sample['h']
        w = sample['w']
        im_shape = np.array((h, w))
        outs = (im, im_shape, im_id)
        return outs