conf_parser.h 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <iostream>
#include <vector>
#include <string>
#include <map>

#include <yaml-cpp/yaml.h>
namespace PaddleSolution {

    class PaddleModelConfigPaser {
	std::map<std::string, int> _scaling_map;
    public:
        PaddleModelConfigPaser()
            :_class_num(0),
            _channels(0),
            _use_gpu(0),
            _batch_size(1),
            _target_short_size(0),
            _model_file_name("__model__"),
            _param_file_name("__params__"),
	    _scaling_map{{"UNPADDING", 0},
			 {"RANGE_SCALING",1}}, 
            _feeds_size(1),
	    _coarsest_stride(1)
	     {
        }
        ~PaddleModelConfigPaser() {
        }

        void reset() {
	    _crop_size.clear();
            _resize.clear();
            _mean.clear();
            _std.clear();
            _img_type.clear();
            _class_num = 0;
            _channels = 0;
            _use_gpu = 0;
            _target_short_size = 0;
            _batch_size = 1;
            _model_file_name = "__model__";
            _model_path = "./";
            _param_file_name="__params__";
	    _resize_type = 0;
	    _resize_max_size = 0;
	    _feeds_size = 1;
 	    _coarsest_stride = 1;
        }

        std::string process_parenthesis(const std::string& str) {
            if (str.size() < 2) {
                return str;
            }
            std::string nstr(str);
            if (str[0] == '(' && str.back() == ')') {
                nstr[0] = '[';
                nstr[str.size() - 1] = ']';
            }
            return nstr;
        }

        template <typename T>
        std::vector<T> parse_str_to_vec(const std::string& str) {
            std::vector<T> data;
            auto node = YAML::Load(str);
            for (const auto& item : node) {
                data.push_back(item.as<T>());
            }
            return data;
        }

        bool load_config(const std::string& conf_file) {
            
            reset();

            YAML::Node config = YAML::LoadFile(conf_file);
            // 1. get resize
            auto str = config["DEPLOY"]["EVAL_CROP_SIZE"].as<std::string>();
            _resize = parse_str_to_vec<int>(process_parenthesis(str));

	    // 0. get crop_size
            if(config["DEPLOY"]["CROP_SIZE"].IsDefined()) {
	        auto crop_str = config["DEPLOY"]["CROP_SIZE"].as<std::string>();
     	        _crop_size = parse_str_to_vec<int>(process_parenthesis(crop_str));	    
            }
	    else {
		_crop_size = _resize;
	    }

            // 2. get mean
            for (const auto& item : config["DEPLOY"]["MEAN"]) {
                _mean.push_back(item.as<float>());
            }

            // 3. get std
            for (const auto& item : config["DEPLOY"]["STD"]) {
                _std.push_back(item.as<float>());
            }

            // 4. get image type
            _img_type = config["DEPLOY"]["IMAGE_TYPE"].as<std::string>();
            // 5. get class number
            _class_num = config["DEPLOY"]["NUM_CLASSES"].as<int>();
            // 7. set model path
            _model_path = config["DEPLOY"]["MODEL_PATH"].as<std::string>();
            // 8. get model file_name
            _model_file_name = config["DEPLOY"]["MODEL_FILENAME"].as<std::string>();
            // 9. get model param file name
            _param_file_name = config["DEPLOY"]["PARAMS_FILENAME"].as<std::string>();
            // 10. get pre_processor
            _pre_processor = config["DEPLOY"]["PRE_PROCESSOR"].as<std::string>();
            // 11. use_gpu
            _use_gpu = config["DEPLOY"]["USE_GPU"].as<int>();
            // 12. predictor_mode
            _predictor_mode = config["DEPLOY"]["PREDICTOR_MODE"].as<std::string>();
            // 13. batch_size
            _batch_size = config["DEPLOY"]["BATCH_SIZE"].as<int>();
            // 14. channels
            _channels = config["DEPLOY"]["CHANNELS"].as<int>();
            // 15. target_short_size
	    if(config["DEPLOY"]["TARGET_SHORT_SIZE"].IsDefined()) {
            	_target_short_size = config["DEPLOY"]["TARGET_SHORT_SIZE"].as<int>();
	    }
	    // 16.resize_type            
	    if(config["DEPLOY"]["RESIZE_TYPE"].IsDefined() && 
                _scaling_map.find(config["DEPLOY"]["RESIZE_TYPE"].as<std::string>()) != _scaling_map.end()) {
                _resize_type = _scaling_map[config["DEPLOY"]["RESIZE_TYPE"].as<std::string>()];
	    }
	    else{
		_resize_type = 0;
	    }
	    // 17.resize_max_size
	    if(config["DEPLOY"]["RESIZE_MAX_SIZE"].IsDefined()) {
	    	_resize_max_size = config["DEPLOY"]["RESIZE_MAX_SIZE"].as<int>();
	    }
            // 18.feeds_size
	    if(config["DEPLOY"]["FEEDS_SIZE"].IsDefined()){
		_feeds_size = config["DEPLOY"]["FEEDS_SIZE"].as<int>();	
            }
	    // 19. coarsest_stride
	    if(config["DEPLOY"]["COARSEST_STRIDE"].IsDefined()) {
		_coarsest_stride = config["DEPLOY"]["COARSEST_STRIDE"].as<int>();
	    }
            return true;
        }

        void debug() const {
            
            std::cout << "SCALE_RESIZE: (" << _resize[0] << ", " << _resize[1] << ")" << std::endl;

            std::cout << "MEAN: [";
            for (int i = 0; i < _mean.size(); ++i) {
                if (i != _mean.size() - 1) {
                    std::cout << _mean[i] << ", ";
                } else {
                    std::cout << _mean[i];
                }
            }
            std::cout << "]" << std::endl;

            std::cout << "STD: [";
            for (int i = 0; i < _std.size(); ++i) {
                if (i != _std.size() - 1) {
                    std::cout << _std[i] << ", ";
                }
                else {
                    std::cout << _std[i];
                }
            }
            std::cout << "]" << std::endl;
            std::cout << "DEPLOY.TARGET_SHORT_SIZE: " << _target_short_size << std::endl;
            std::cout << "DEPLOY.IMAGE_TYPE: " << _img_type << std::endl;
            std::cout << "DEPLOY.NUM_CLASSES: " << _class_num << std::endl;
            std::cout << "DEPLOY.CHANNELS: " << _channels << std::endl;
            std::cout << "DEPLOY.MODEL_PATH: " << _model_path << std::endl;
            std::cout << "DEPLOY.MODEL_FILENAME: " << _model_file_name << std::endl;
            std::cout << "DEPLOY.PARAMS_FILENAME: " << _param_file_name << std::endl;
            std::cout << "DEPLOY.PRE_PROCESSOR: " << _pre_processor << std::endl;
            std::cout << "DEPLOY.USE_GPU: " << _use_gpu << std::endl;
            std::cout << "DEPLOY.PREDICTOR_MODE: " << _predictor_mode << std::endl;
            std::cout << "DEPLOY.BATCH_SIZE: " << _batch_size << std::endl;
        }
	//DEPLOY.COARSEST_STRIDE
	int _coarsest_stride;
        // DEPLOY.FEEDS_SIZE
	int _feeds_size;
	// DEPLOY.RESIZE_TYPE  0:unpadding 1:rangescaling  Default:0
        int _resize_type;
	// DEPLOY.RESIZE_MAX_SIZE
        int _resize_max_size;
	// DEPLOY.CROP_SIZE
	std::vector<int> _crop_size;
        // DEPLOY.SCALE_RESIZE
        std::vector<int> _resize;
        // DEPLOY.MEAN
        std::vector<float> _mean;
        // DEPLOY.STD
        std::vector<float> _std;
        // DEPLOY.IMAGE_TYPE
        std::string _img_type;
        // DEPLOY.TARGET_SHORT_SIZE
        int _target_short_size;
        // DEPLOY.NUM_CLASSES
        int _class_num;
        // DEPLOY.CHANNELS
        int _channels;
        // DEPLOY.MODEL_PATH
        std::string _model_path;
        // DEPLOY.MODEL_FILENAME
        std::string _model_file_name;
        // DEPLOY.PARAMS_FILENAME
        std::string _param_file_name;
        // DEPLOY.PRE_PROCESSOR
        std::string _pre_processor;
        // DEPLOY.USE_GPU
        int _use_gpu;
        // DEPLOY.PREDICTOR_MODE
        std::string _predictor_mode;
        // DEPLOY.BATCH_SIZE
        int _batch_size;
    };

}