train.py 6.7 KB
Newer Older
H
hetianjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

H
hetianjian 已提交
15 16 17 18
import numpy as np
import os
from functools import partial
import logging
Z
zhengya01 已提交
19
import time
H
hetianjian 已提交
20 21 22 23 24
import paddle
import paddle.fluid as fluid
import argparse
import network
import reader
H
hutuxian 已提交
25
import sys
H
hetianjian 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser("gnn")
    parser.add_argument(
        '--train_path', type=str, default='./data/diginetica/train.txt', help='dir of training data')
    parser.add_argument(
        '--config_path', type=str, default='./data/diginetica/config.txt', help='dir of config')
    parser.add_argument(
        '--model_path', type=str, default='./saved_model', help="path of model parameters")
    parser.add_argument(
        '--epoch_num', type=int, default=30, help='number of epochs to train for')
    parser.add_argument(
        '--batch_size', type=int, default=100, help='input batch size')
    parser.add_argument(
        '--hidden_size', type=int, default=100, help='hidden state size')
    parser.add_argument(
        '--l2', type=float, default=1e-5, help='l2 penalty')
    parser.add_argument(
        '--lr', type=float, default=0.001, help='learning rate')
    parser.add_argument(
        '--step', type=int, default=1, help='gnn propogation steps')
    parser.add_argument(
        '--lr_dc', type=float, default=0.1, help='learning rate decay rate')
    parser.add_argument(
        '--lr_dc_step', type=int, default=3, help='the number of steps after which the learning rate decay')
    parser.add_argument(
        '--use_cuda', type=int, default=0, help='whether to use gpu')
    parser.add_argument(
        '--use_parallel', type=int, default=1, help='whether to use parallel executor')
Z
zhengya01 已提交
60 61
    parser.add_argument(
        '--enable_ce', action='store_true', help='If set, run the task with continuous evaluation logs.')
H
hetianjian 已提交
62 63 64 65 66
    return parser.parse_args()


def train():
    args = parse_args()
Z
zhengya01 已提交
67 68 69 70 71 72

    if args.enable_ce:
        SEED = 102
        fluid.default_main_program().random_seed = SEED
        fluid.default_startup_program().random_seed = SEED

H
hetianjian 已提交
73 74
    batch_size = args.batch_size
    items_num = reader.read_config(args.config_path)
H
hutuxian 已提交
75
    loss, acc, py_reader, feed_datas = network.network(items_num, args.hidden_size,
H
hutuxian 已提交
76
                                args.step, batch_size)
H
hetianjian 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

    data_reader = reader.Data(args.train_path, True)
    logger.info("load data complete")

    use_cuda = True if args.use_cuda else False
    use_parallel = True if args.use_parallel else False
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    exe = fluid.Executor(place)
    step_per_epoch = data_reader.length // batch_size
    optimizer = fluid.optimizer.Adam(
        learning_rate=fluid.layers.exponential_decay(
            learning_rate=args.lr,
            decay_steps=step_per_epoch * args.lr_dc_step,
            decay_rate=args.lr_dc),
        regularization=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=args.l2))
    optimizer.minimize(loss)

    exe.run(fluid.default_startup_program())

    all_vocab = fluid.global_scope().var("all_vocab").get_tensor()
    all_vocab.set(
H
hutuxian 已提交
100
        np.arange(1, items_num).astype("int64").reshape((-1)), place)
H
hetianjian 已提交
101

102
    feed_list = [e.name for e in feed_datas]
H
hetianjian 已提交
103 104

    if use_parallel:
105 106
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1 if os.name == 'nt' else 0
H
hetianjian 已提交
107
        train_exe = fluid.ParallelExecutor(
108
            use_cuda=use_cuda, loss_name=loss.name, exec_strategy=exec_strategy)
H
hetianjian 已提交
109 110 111 112 113
    else:
        train_exe = exe

    logger.info("begin train")

Z
zhengya01 已提交
114 115 116
    total_time = []
    ce_info = []
    start_time = time.time()
H
hetianjian 已提交
117 118 119 120
    loss_sum = 0.0
    acc_sum = 0.0
    global_step = 0
    PRINT_STEP = 500
121
    py_reader.decorate_paddle_reader(data_reader.reader(batch_size, batch_size * 20, True))
H
hetianjian 已提交
122 123
    for i in range(args.epoch_num):
        epoch_sum = []
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        py_reader.start()
        try:
            while True:
                res = train_exe.run(fetch_list=[loss.name, acc.name])
                loss_sum += res[0].mean()
                acc_sum += res[1].mean()
                epoch_sum.append(res[0].mean())
                global_step += 1
                if global_step % PRINT_STEP == 0:
                    ce_info.append([loss_sum / PRINT_STEP, acc_sum / PRINT_STEP])
                    total_time.append(time.time() - start_time)
                    logger.info("global_step: %d, loss: %.4lf, train_acc: %.4lf" % (
                        global_step, loss_sum / PRINT_STEP, acc_sum / PRINT_STEP))
                    loss_sum = 0.0
                    acc_sum = 0.0
                    start_time = time.time()
        except fluid.core.EOFException:
            py_reader.reset()
H
hetianjian 已提交
142 143 144 145 146 147
        logger.info("epoch loss: %.4lf" % (np.mean(epoch_sum)))
        save_dir = args.model_path + "/epoch_" + str(i)
        fetch_vars = [loss, acc]
        fluid.io.save_inference_model(save_dir, feed_list, fetch_vars, exe)
        logger.info("model saved in " + save_dir)

Z
zhengya01 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    # only for ce
    if args.enable_ce:
        gpu_num = get_cards(args)
        ce_loss = 0
        ce_acc = 0
        ce_time = 0
        try:
            ce_loss = ce_info[-1][0]
            ce_acc = ce_info[-1][1]
            ce_time = total_time[-1]
        except:
            print("ce info error")
        print("kpis\teach_pass_duration_card%s\t%s" %
                    (gpu_num, ce_time))
        print("kpis\ttrain_loss_card%s\t%f" %
                    (gpu_num, ce_loss))
        print("kpis\ttrain_acc_card%s\t%f" %
                    (gpu_num, ce_acc))


def get_cards(args):
    num = 0
    cards = os.environ.get('CUDA_VISIBLE_DEVICES')
    num = len(cards.split(","))
    return num

H
hutuxian 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187
def check_version():
    """
    Log error and exit when the installed version of paddlepaddle is
    not satisfied.
    """
    err = "PaddlePaddle version 1.6 or higher is required, " \
          "or a suitable develop version is satisfied as well. \n" \
          "Please make sure the version is good with your code." \

    try:
        fluid.require_version('1.6.0')
    except Exception as e:
        logger.error(err)
        sys.exit(1)
H
hetianjian 已提交
188 189

if __name__ == "__main__":
H
hutuxian 已提交
190
    check_version()
H
hetianjian 已提交
191
    train()