train.py 14.9 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7
import datetime
import os
import sys
import time

import paddle
from paddle import nn
G
Guanghua Yu 已提交
8
from paddle.static import InputSpec
littletomatodonkey's avatar
littletomatodonkey 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22
import paddlevision

import presets
import utils

import numpy as np
import random

apex = None

import numpy as np
from reprod_log import ReprodLogger


littletomatodonkey's avatar
littletomatodonkey 已提交
23 24 25 26 27 28 29 30
def train_one_epoch(model,
                    criterion,
                    optimizer,
                    data_loader,
                    epoch,
                    print_freq,
                    amp_level=None,
                    scaler=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
    model.train()
    # training log
    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    acc1 = 0.0
    acc5 = 0.0
    reader_start = time.time()
    batch_past = 0

    for batch_idx, (image, target) in enumerate(data_loader):
        train_reader_cost += time.time() - reader_start
        train_start = time.time()
Z
zhangbo9674 已提交
44 45 46 47

        if amp_level is not None:
            with paddle.amp.auto_cast(level=amp_level):
                output = model(image)
48
                loss = criterion(output, target.astype("int64"))
Z
zhangbo9674 已提交
49 50 51 52 53
            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.minimize(optimizer, scaled)
        else:
            output = model(image)
54
            loss = criterion(output, target.astype("int64"))
Z
zhangbo9674 已提交
55 56 57
            loss.backward()
            optimizer.step()

littletomatodonkey's avatar
littletomatodonkey 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        optimizer.clear_grad()
        train_run_cost += time.time() - train_start
        acc = utils.accuracy(output, target, topk=(1, 5))
        acc1 += acc[0].item()
        acc5 += acc[1].item()
        total_samples += image.shape[0]
        batch_past += 1

        if batch_idx % print_freq == 0:
            msg = "[Epoch {}, iter: {}] top1: {:.5f}, top5: {:.5f}, lr: {:.5f}, loss: {:.5f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {}, avg_ips: {:.5f} images/sec.".format(
                epoch, batch_idx, acc1 / batch_past, acc5 / batch_past,
                optimizer.get_lr(),
                loss.item(), train_reader_cost / batch_past,
                (train_reader_cost + train_run_cost) / batch_past,
                total_samples / batch_past,
                total_samples / (train_reader_cost + train_run_cost))
            if paddle.distributed.get_rank() <= 0:
                print(msg)
                sys.stdout.flush()
            train_reader_cost = 0.0
            train_run_cost = 0.0
            total_samples = 0
            acc1 = 0.0
            acc5 = 0.0
            batch_past = 0

        reader_start = time.time()


littletomatodonkey's avatar
littletomatodonkey 已提交
87
def evaluate(model, criterion, data_loader, print_freq=100, amp_level=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
88 89 90 91 92 93
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'
    with paddle.no_grad():
        for image, target in metric_logger.log_every(data_loader, print_freq,
                                                     header):
Z
zhangbo9674 已提交
94 95 96
            if amp_level is not None:
                with paddle.amp.auto_cast(level=amp_level):
                    output = model(image)
97
                    loss = criterion(output, target.astype("int64"))
Z
zhangbo9674 已提交
98 99
            else:
                output = model(image)
100
                loss = criterion(output, target.astype("int64"))
littletomatodonkey's avatar
littletomatodonkey 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

            acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
            # FIXME need to take into account that the datasets
            # could have been padded in distributed setup
            batch_size = image.shape[0]
            metric_logger.update(loss=loss.item())
            metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
            metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()

    print(' * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'.format(
        top1=metric_logger.acc1, top5=metric_logger.acc5))
    return metric_logger.acc1.global_avg


def load_data(traindir, valdir, args):
    # Data loading code
    print("Loading data")
    resize_size, crop_size = (342, 299) if args.model == 'inception_v3' else (
        256, 224)

    print("Loading training data")
    st = time.time()
    auto_augment_policy = getattr(args, "auto_augment", None)
    random_erase_prob = getattr(args, "random_erase", 0.0)
    dataset = paddlevision.datasets.ImageFolder(
        traindir,
        presets.ClassificationPresetTrain(
            crop_size=crop_size,
            auto_augment_policy=auto_augment_policy,
            random_erase_prob=random_erase_prob))

    print("Took", time.time() - st)

    print("Loading validation data")
    dataset_test = paddlevision.datasets.ImageFolder(
        valdir,
        presets.ClassificationPresetEval(
            crop_size=crop_size, resize_size=resize_size))

    print("Creating data loaders")
    train_sampler = paddle.io.DistributedBatchSampler(
        dataset=dataset,
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False)
    # train_sampler = paddle.io.RandomSampler(dataset)

    test_sampler = paddle.io.SequenceSampler(dataset_test)

    return dataset, dataset_test, train_sampler, test_sampler


def main(args):
    if args.output_dir:
        utils.mkdir(args.output_dir)

    print(args)

littletomatodonkey's avatar
littletomatodonkey 已提交
162 163 164 165
    try:
        paddle.set_device(args.device)
    except:
        print("device set error, use default device...")
littletomatodonkey's avatar
littletomatodonkey 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

    # multi cards
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    train_dir = os.path.join(args.data_path, 'train')
    val_dir = os.path.join(args.data_path, 'val')
    dataset, dataset_test, train_sampler, test_sampler = load_data(
        train_dir, val_dir, args)
    train_batch_sampler = train_sampler
    # train_batch_sampler = paddle.io.BatchSampler(
    #     sampler=train_sampler, batch_size=args.batch_size)
    data_loader = paddle.io.DataLoader(
        dataset=dataset,
        num_workers=args.workers,
        return_list=True,
        batch_sampler=train_batch_sampler)
    test_batch_sampler = paddle.io.BatchSampler(
        sampler=test_sampler, batch_size=args.batch_size)
    data_loader_test = paddle.io.DataLoader(
        dataset_test,
        batch_sampler=test_batch_sampler,
        num_workers=args.workers)

    print("Creating model")
    model = paddlevision.models.__dict__[args.model](
        pretrained=args.pretrained)

G
Guanghua Yu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    if args.pact_quant:
        try:
            from paddleslim.dygraph.quant import QAT
        except Exception as e:
            print(
                'Unable to QAT, please install paddleslim, for example: `pip install paddleslim`'
            )
            return

        quant_config = {
            # activation preprocess type, default is None and no preprocessing is performed.
            'activation_preprocess_type': 'PACT',
            # weight preprocess type, default is None and no preprocessing is performed. 
            'weight_preprocess_type': None,
            # weight quantize type, default is 'channel_wise_abs_max'
            'weight_quantize_type': 'channel_wise_abs_max',
            # activation quantize type, default is 'moving_average_abs_max'
            'activation_quantize_type': 'moving_average_abs_max',
            # weight quantize bit num, default is 8
            'weight_bits': 8,
            # activation quantize bit num, default is 8
            'activation_bits': 8,
            # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
            'dtype': 'int8',
            # window size for 'range_abs_max' quantization. default is 10000
            'window_size': 10000,
            # The decay coefficient of moving average, default is 0.9
            'moving_rate': 0.9,
            # for dygraph quantization, layers of type in quantizable_layer_type will be quantized
            'quantizable_layer_type': ['Conv2D', 'Linear'],
        }

        quanter = QAT(config=quant_config)
        quanter.quantize(model)
        print("Quanted model")

littletomatodonkey's avatar
littletomatodonkey 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    criterion = nn.CrossEntropyLoss()

    lr_scheduler = paddle.optimizer.lr.StepDecay(
        args.lr, step_size=args.lr_step_size, gamma=args.lr_gamma)

    opt_name = args.opt.lower()
    if opt_name == 'sgd':
        optimizer = paddle.optimizer.Momentum(
            learning_rate=lr_scheduler,
            momentum=args.momentum,
            parameters=model.parameters(),
            weight_decay=args.weight_decay)
    elif opt_name == 'rmsprop':
        optimizer = paddle.optimizer.RMSprop(
            learning_rate=lr_scheduler,
            momentum=args.momentum,
            parameters=model.parameters(),
            weight_decay=args.weight_decay,
            eps=0.0316,
            alpha=0.9)
    else:
        raise RuntimeError(
            "Invalid optimizer {}. Only SGD and RMSprop are supported.".format(
                args.opt))

    if args.resume:
        layer_state_dict = paddle.load(os.path.join(args.resume, '.pdparams'))
        model.set_state_dict(layer_state_dict)
        opt_state_dict = paddle.load(os.path.join(args.resume, '.pdopt'))
        optimizer.load_state_dict(opt_state_dict)
littletomatodonkey's avatar
littletomatodonkey 已提交
260

Z
zhangbo9674 已提交
261 262 263 264 265 266
    scaler = None
    if args.amp_level is not None:
        scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
        if args.amp_level == 'O2':
            model = paddle.amp.decorate(models=model, level='O2')

littletomatodonkey's avatar
littletomatodonkey 已提交
267 268 269 270 271
    # multi cards
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    if args.test_only and paddle.distributed.get_rank() == 0:
littletomatodonkey's avatar
littletomatodonkey 已提交
272 273
        top1 = evaluate(
            model, criterion, data_loader_test, amp_level=args.amp_level)
littletomatodonkey's avatar
littletomatodonkey 已提交
274 275 276 277 278 279 280
        return top1

    print("Start training")
    start_time = time.time()
    best_top1 = 0.0

    for epoch in range(args.start_epoch, args.epochs):
littletomatodonkey's avatar
littletomatodonkey 已提交
281 282
        train_one_epoch(model, criterion, optimizer, data_loader, epoch,
                        args.print_freq, args.amp_level, scaler)
littletomatodonkey's avatar
littletomatodonkey 已提交
283 284
        lr_scheduler.step()
        if paddle.distributed.get_rank() == 0:
littletomatodonkey's avatar
littletomatodonkey 已提交
285 286
            top1 = evaluate(
                model, criterion, data_loader_test, amp_level=args.amp_level)
littletomatodonkey's avatar
littletomatodonkey 已提交
287 288 289 290 291 292 293 294 295 296 297
            if args.output_dir:
                paddle.save(model.state_dict(),
                            os.path.join(args.output_dir,
                                         'model_{}.pdparams'.format(epoch)))
                paddle.save(optimizer.state_dict(),
                            os.path.join(args.output_dir,
                                         'model_{}.pdopt'.format(epoch)))
                paddle.save(model.state_dict(),
                            os.path.join(args.output_dir, 'latest.pdparams'))
                paddle.save(optimizer.state_dict(),
                            os.path.join(args.output_dir, 'latest.pdopt'))
littletomatodonkey's avatar
littletomatodonkey 已提交
298 299 300 301 302 303
                if top1 > best_top1:
                    best_top1 = top1
                    paddle.save(model.state_dict(),
                                os.path.join(args.output_dir, 'best.pdparams'))
                    paddle.save(optimizer.state_dict(),
                                os.path.join(args.output_dir, 'best.pdopt'))
littletomatodonkey's avatar
littletomatodonkey 已提交
304

C
ceci3 已提交
305 306 307 308 309 310 311 312 313 314
    if args.pact_quant:
        input_spec = [
            InputSpec(
                shape=[None, 3, 224, 224], dtype='float32')
        ]
        quanter.save_quantized_model(
            model,
            os.path.join(args.output_dir, "qat_inference"),
            input_spec=input_spec)
        print("QAT inference model saved in {args.output_dir}")
G
Guanghua Yu 已提交
315

littletomatodonkey's avatar
littletomatodonkey 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
    return best_top1


def get_args_parser(add_help=True):
    import argparse
    parser = argparse.ArgumentParser(
        description='PaddlePaddle Classification Training', add_help=add_help)

    parser.add_argument('--data-path', default='./data', help='dataset')
    parser.add_argument('--model', default='mobilenet_v3_small', help='model')
    parser.add_argument('--device', default='gpu', help='device')
littletomatodonkey's avatar
littletomatodonkey 已提交
330
    parser.add_argument('-b', '--batch-size', default=256, type=int)
littletomatodonkey's avatar
littletomatodonkey 已提交
331 332 333 334 335 336
    parser.add_argument(
        '--epochs',
        default=90,
        type=int,
        metavar='N',
        help='number of total epochs to run')
Z
zhangbo9674 已提交
337
    parser.add_argument(
littletomatodonkey's avatar
littletomatodonkey 已提交
338
        '--amp_level', default=None, help='amp level can set to be : O1/O2')
littletomatodonkey's avatar
littletomatodonkey 已提交
339 340 341 342 343 344 345 346 347
    parser.add_argument(
        '-j',
        '--workers',
        default=8,
        type=int,
        metavar='N',
        help='number of data loading workers (default: 16)')
    parser.add_argument('--opt', default='sgd', type=str, help='optimizer')
    parser.add_argument(
littletomatodonkey's avatar
littletomatodonkey 已提交
348
        '--lr', default=0.1, type=float, help='initial learning rate')
littletomatodonkey's avatar
littletomatodonkey 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    parser.add_argument(
        '--momentum', default=0.9, type=float, metavar='M', help='momentum')
    parser.add_argument(
        '--wd',
        '--weight-decay',
        default=1e-4,
        type=float,
        metavar='W',
        help='weight decay (default: 1e-4)',
        dest='weight_decay')
    parser.add_argument(
        '--lr-step-size',
        default=30,
        type=int,
        help='decrease lr every step-size epochs')
    parser.add_argument(
        '--lr-gamma',
        default=0.1,
        type=float,
        help='decrease lr by a factor of lr-gamma')
    parser.add_argument(
littletomatodonkey's avatar
littletomatodonkey 已提交
370
        '--print-freq', default=10, type=int, help='print frequency')
littletomatodonkey's avatar
littletomatodonkey 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    parser.add_argument('--output-dir', default='.', help='path where to save')
    parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument(
        '--start-epoch', default=0, type=int, metavar='N', help='start epoch')
    parser.add_argument(
        "--sync-bn",
        dest="sync_bn",
        help="Use sync batch norm",
        action="store_true", )
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true", )
    parser.add_argument(
        "--pretrained",
        dest="pretrained",
        help="Use pre-trained models from the modelzoo")
    parser.add_argument(
        '--auto-augment',
        default=None,
        help='auto augment policy (default: None)')
    parser.add_argument(
        '--random-erase',
        default=0.0,
        type=float,
        help='random erasing probability (default: 0.0)')

    # Mixed precision training parameters
    parser.add_argument(
        '--apex',
        action='store_true',
        help='Use apex for mixed precision training')
    parser.add_argument(
        '--apex-opt-level',
        default='O1',
        type=str,
        help='For apex mixed precision training'
        'O0 for FP32 training, O1 for mixed precision training.'
        'For further detail, see https://github.com/NVIDIA/apex/tree/master/examples/imagenet'
    )

G
Guanghua Yu 已提交
413 414 415 416 417 418
    # Quant aware training parameters
    parser.add_argument(
        '--pact_quant',
        action='store_true',
        help='Use pact for quant aware training')

littletomatodonkey's avatar
littletomatodonkey 已提交
419 420 421 422 423 424 425 426 427 428
    return parser


if __name__ == "__main__":
    args = get_args_parser().parse_args()
    top1 = main(args)
    if paddle.distributed.get_rank() == 0:
        reprod_logger = ReprodLogger()
        reprod_logger.add("top1", np.array([top1]))
        reprod_logger.save("train_align_paddle.npy")