data.py 7.1 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The file_reader converts raw corpus to input.
"""

import os

import paddle
import numpy as np

# We use "\002" to separate sentence characters and sequence labels,
# for example: 除\002了\002他\002续\002任\002十\002二\002届\002政\002协\002委\002员
#              p-B\002p-I\002r-B\002v-B\002v-I\002m-B\002m-I\002m-I\002ORG-B\002ORG-I\002n-B\002n-I\002
CHAR_DELIMITER = "\002"


class LacDataset(paddle.io.Dataset):
    """Load the dataset and convert all the texts to ids.

        Args:
            base_path (str): the path of the dataset directory.
            word_vocab (str): The path of the word dictionary.
            label_vocab (str): The path of the label dictionary.
            word_replace_dict (str): The path of the word replacement Dictionary.
            mode (str, optional): The load mode, "train", "test" or "infer". Defaults to 'train', meaning load the train dataset.
        """

K
kinghuin 已提交
40
    def __init__(self, base_path, mode='train'):
Z
Zeyu Chen 已提交
41 42
        self.mode = mode
        self.base_path = base_path
K
kinghuin 已提交
43 44 45 46 47 48 49 50
        word_dict_path = os.path.join(self.base_path, 'word.dic')
        label_dict_path = os.path.join(self.base_path, 'tag.dic')
        word_rep_dict_path = os.path.join(self.base_path, 'q2b.dic')
        self.word_vocab = self._load_kv_dict(
            word_dict_path, value_func=np.int64, reverse=True)
        self.label_vocab = self._load_kv_dict(
            label_dict_path, value_func=np.int64, reverse=True)
        self.word_replace_dict = self._load_kv_dict(word_rep_dict_path)
Z
Zeyu Chen 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

        # Calculate vocab size and labels number, note: vocab value strats from 0.
        self.vocab_size = max(self.word_vocab.values()) + 1
        self.num_labels = max(self.label_vocab.values()) + 1

        if self.mode in {"train", "test", "infer"}:
            self.dataset_path = os.path.join(self.base_path,
                                             "%s.tsv" % self.mode)
            self._read_file()
        else:
            raise ValueError(
                'Invalid mode: %s. Only support "train", "test" and "infer"' %
                self.mode)

    def __len__(self):
        return self.total

    def __getitem__(self, index):
        if self.mode == "infer":
K
kinghuin 已提交
70
            return [self.word_ids[index], len(self.word_ids[index])]
Z
Zeyu Chen 已提交
71
        else:
K
kinghuin 已提交
72 73 74 75
            return [
                self.word_ids[index], len(self.word_ids[index]),
                self.label_ids[index]
            ]
Z
Zeyu Chen 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

    def _read_file(self):
        self.word_ids = []
        self.label_ids = []
        self.total = 0
        with open(self.dataset_path, "r", encoding="utf-8") as fread:
            if self.mode != "infer":
                next(fread)
            for line in fread:
                line = line.strip()
                if self.mode == "infer":
                    words = list(line)
                else:
                    words, labels = line.split("\t")
                    words = words.split(CHAR_DELIMITER)

K
kinghuin 已提交
92
                tmp_word_ids = self._convert_tokens_to_ids(
Z
Zeyu Chen 已提交
93 94 95 96 97 98 99
                    words,
                    self.word_vocab,
                    oov_replace="OOV",
                    token_replace=self.word_replace_dict)

                self.word_ids.append(tmp_word_ids)
                if self.mode != "infer":
K
kinghuin 已提交
100
                    tmp_label_ids = self._convert_tokens_to_ids(
Z
Zeyu Chen 已提交
101 102 103 104 105 106 107 108 109 110
                        labels.split(CHAR_DELIMITER),
                        self.label_vocab,
                        oov_replace="O")
                    self.label_ids.append(tmp_label_ids)
                    assert len(tmp_word_ids) == len(
                        tmp_label_ids
                    ), "The word ids %s is not match with the label ids %s" % (
                        tmp_word_ids, tmp_label_ids)

                self.total += 1
K
kinghuin 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

    def _load_kv_dict(self,
                      dict_path,
                      delimiter="\t",
                      key_func=None,
                      value_func=None,
                      reverse=False):
        """
        Load key-value dict from file
        """
        vocab = {}
        for line in open(dict_path, "r", encoding='utf8'):
            terms = line.strip("\n").split(delimiter)
            if len(terms) != 2:
                continue
            if reverse:
                value, key = terms
            else:
                key, value = terms
            if key in vocab:
                raise KeyError("key duplicated with [%s]" % (key))
            if key_func:
                key = key_func(key)
            if value_func:
                value = value_func(value)
            vocab[key] = value
        return vocab

    def _convert_tokens_to_ids(self,
                               tokens,
                               vocab,
                               oov_replace=None,
                               token_replace=None):
        """convert tokens to token indexs"""
        token_ids = []
        oov_replace_token = vocab.get(oov_replace) if oov_replace else None
        for token in tokens:
            if token_replace:
                token = token_replace.get(token, token)
            token_id = vocab.get(token, oov_replace_token)
            token_ids.append(token_id)

        return token_ids


def parse_lac_result(words, preds, lengths, word_vocab, label_vocab):
    """ parse padding result """
    batch_out = []
    id2word_dict = dict(zip(word_vocab.values(), word_vocab.keys()))
    id2label_dict = dict(zip(label_vocab.values(), label_vocab.keys()))
    for sent_index in range(len(lengths)):
        sent = [
            id2word_dict[index]
            for index in words[sent_index][:lengths[sent_index] - 1]
        ]
        tags = [
            id2label_dict[index]
            for index in preds[sent_index][:lengths[sent_index] - 1]
        ]

        sent_out = []
        tags_out = []
        parital_word = ""
        for ind, tag in enumerate(tags):
            # for the first word
            if parital_word == "":
                parital_word = sent[ind]
                tags_out.append(tag.split('-')[0])
                continue

            # for the beginning of word
            if tag.endswith("-B") or (tag == "O" and tags[ind - 1] != "O"):
                sent_out.append(parital_word)
                tags_out.append(tag.split('-')[0])
                parital_word = sent[ind]
                continue

            parital_word += sent[ind]

        # append the last word, except for len(tags)=0
        if len(sent_out) < len(tags_out):
            sent_out.append(parital_word)

        batch_out.append([sent_out, tags_out])
    return batch_out