infer.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import os
K
ktlichkid 已提交
21
import six
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
from paddle.fluid.contrib.decoder.beam_search_decoder import *

from args import *
import attention_model
import no_attention_model


def infer():
    args = parse_args()

    # Inference
    if args.no_attention:
        translation_ids, translation_scores, feed_order = \
            no_attention_model.seq_to_seq_net(
            args.embedding_dim,
            args.encoder_size,
            args.decoder_size,
            args.dict_size,
            args.dict_size,
            True,
            beam_size=args.beam_size,
            max_length=args.max_length)
    else:
        translation_ids, translation_scores, feed_order = \
            attention_model.seq_to_seq_net(
            args.embedding_dim,
            args.encoder_size,
            args.decoder_size,
            args.dict_size,
            args.dict_size,
            True,
            beam_size=args.beam_size,
            max_length=args.max_length)

    test_batch_generator = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.test(args.dict_size), buf_size=1000),
        batch_size=args.batch_size,
        drop_last=False)

    place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
    exe = Executor(place)
    exe.run(framework.default_startup_program())

    model_path = os.path.join(args.save_dir, str(args.pass_num))
    fluid.io.load_persistables(
        executor=exe,
        dirname=model_path,
        main_program=framework.default_main_program())

    src_dict, trg_dict = paddle.dataset.wmt14.get_dict(args.dict_size)

    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order[0:1]
    ]
    feeder = fluid.DataFeeder(feed_list, place)

    for batch_id, data in enumerate(test_batch_generator()):
        # The value of batch_size may vary in the last batch
        batch_size = len(data)

        # Setup initial ids and scores lod tensor
        init_ids_data = np.array([0 for _ in range(batch_size)], dtype='int64')
        init_scores_data = np.array(
            [1. for _ in range(batch_size)], dtype='float32')
        init_ids_data = init_ids_data.reshape((batch_size, 1))
        init_scores_data = init_scores_data.reshape((batch_size, 1))
        init_recursive_seq_lens = [1] * batch_size
        init_recursive_seq_lens = [
            init_recursive_seq_lens, init_recursive_seq_lens
        ]
        init_ids = fluid.create_lod_tensor(init_ids_data,
                                           init_recursive_seq_lens, place)
        init_scores = fluid.create_lod_tensor(init_scores_data,
                                              init_recursive_seq_lens, place)

        # Feed dict for inference
K
ktlichkid 已提交
106
        feed_dict = feeder.feed([[x[0]] for x in data])
107 108 109 110 111 112 113 114 115 116 117 118
        feed_dict['init_ids'] = init_ids
        feed_dict['init_scores'] = init_scores

        fetch_outs = exe.run(framework.default_main_program(),
                             feed=feed_dict,
                             fetch_list=[translation_ids, translation_scores],
                             return_numpy=False)

        # Split the output words by lod levels
        lod_level_1 = fetch_outs[0].lod()[1]
        token_array = np.array(fetch_outs[0])
        result = []
K
ktlichkid 已提交
119
        for i in six.moves.xrange(len(lod_level_1) - 1):
120 121 122 123 124 125 126 127 128
            sentence_list = [
                trg_dict[token]
                for token in token_array[lod_level_1[i]:lod_level_1[i + 1]]
            ]
            sentence = " ".join(sentence_list[1:-1])
            result.append(sentence)
        lod_level_0 = fetch_outs[0].lod()[0]
        paragraphs = [
            result[lod_level_0[i]:lod_level_0[i + 1]]
K
ktlichkid 已提交
129
            for i in six.moves.xrange(len(lod_level_0) - 1)
130 131 132 133 134 135 136 137
        ]

        for paragraph in paragraphs:
            print(paragraph)


if __name__ == '__main__':
    infer()