douban_evaluation.py 2.4 KB
Newer Older
Y
Yibing Liu 已提交
1
import sys
Y
Yibing Liu 已提交
2
import six
Y
Yibing Liu 已提交
3 4 5 6 7 8 9 10
import numpy as np
from sklearn.metrics import average_precision_score


def mean_average_precision(sort_data):
    #to do
    count_1 = 0
    sum_precision = 0
Y
Yibing Liu 已提交
11
    for index in six.moves.xrange(len(sort_data)):
Y
Yibing Liu 已提交
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
        if sort_data[index][1] == 1:
            count_1 += 1
            sum_precision += 1.0 * count_1 / (index + 1)
    return sum_precision / count_1


def mean_reciprocal_rank(sort_data):
    sort_lable = [s_d[1] for s_d in sort_data]
    assert 1 in sort_lable
    return 1.0 / (1 + sort_lable.index(1))


def precision_at_position_1(sort_data):
    if sort_data[0][1] == 1:
        return 1
    else:
        return 0


def recall_at_position_k_in_10(sort_data, k):
    sort_lable = [s_d[1] for s_d in sort_data]
    select_lable = sort_lable[:k]
    return 1.0 * select_lable.count(1) / sort_lable.count(1)


def evaluation_one_session(data):
    sort_data = sorted(data, key=lambda x: x[0], reverse=True)
    m_a_p = mean_average_precision(sort_data)
    m_r_r = mean_reciprocal_rank(sort_data)
    p_1 = precision_at_position_1(sort_data)
    r_1 = recall_at_position_k_in_10(sort_data, 1)
    r_2 = recall_at_position_k_in_10(sort_data, 2)
    r_5 = recall_at_position_k_in_10(sort_data, 5)
    return m_a_p, m_r_r, p_1, r_1, r_2, r_5


def evaluate(file_path):
    sum_m_a_p = 0
    sum_m_r_r = 0
    sum_p_1 = 0
    sum_r_1 = 0
    sum_r_2 = 0
    sum_r_5 = 0
    i = 0
    total_num = 0
    with open(file_path, 'r') as infile:
        for line in infile:
            if i % 10 == 0:
                data = []

            tokens = line.strip().split('\t')
            data.append((float(tokens[0]), int(tokens[1])))
            if i % 10 == 9:
                total_num += 1
                m_a_p, m_r_r, p_1, r_1, r_2, r_5 = evaluation_one_session(data)
                sum_m_a_p += m_a_p
                sum_m_r_r += m_r_r
                sum_p_1 += p_1
                sum_r_1 += r_1
                sum_r_2 += r_2
                sum_r_5 += r_5
            i += 1
    #print('total num: %s' %total_num)
    #print('MAP: %s' %(1.0*sum_m_a_p/total_num))
    #print('MRR: %s' %(1.0*sum_m_r_r/total_num))
    #print('P@1: %s' %(1.0*sum_p_1/total_num))
    return (1.0 * sum_m_a_p / total_num, 1.0 * sum_m_r_r / total_num,
            1.0 * sum_p_1 / total_num, 1.0 * sum_r_1 / total_num,
            1.0 * sum_r_2 / total_num, 1.0 * sum_r_5 / total_num)


if __name__ == '__main__':
    result = evaluate(sys.argv[1])
    for r in result:
        print(r)