dist_train.py 12.9 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import time
import os
import traceback

import numpy as np

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
25
import six
Y
Yancey1989 已提交
26 27 28 29
import sys
sys.path.append("..")
import models
from args import *
Y
Yancey1989 已提交
30
from reader import train, val
Y
Yancey1989 已提交
31 32 33 34 35 36 37 38 39

def get_model(args, is_train, main_prog, startup_prog):
    pyreader = None
    class_dim = 1000
    if args.data_format == 'NCHW':
        dshape = [3, 224, 224]
    else:
        dshape = [224, 224, 3]
    if is_train:
Y
Yancey1989 已提交
40
        reader = train(data_dir=args.data_dir)
Y
Yancey1989 已提交
41
    else:
Y
Yancey1989 已提交
42
        reader = val(data_dir=args.data_dir)
Y
Yancey1989 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    trainer_count = int(os.getenv("PADDLE_TRAINERS", "1"))
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            pyreader = fluid.layers.py_reader(
                capacity=args.batch_size * args.gpus,
                shapes=([-1] + dshape, (-1, 1)),
                dtypes=('float32', 'int64'),
                name="train_reader" if is_train else "test_reader",
                use_double_buffer=True)
            input, label = fluid.layers.read_file(pyreader)
            model_def = models.__dict__[args.model]()
            predict = model_def.net(input, class_dim=class_dim)

            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(x=cost)

            batch_acc1 = fluid.layers.accuracy(input=predict, label=label, k=1)
            batch_acc5 = fluid.layers.accuracy(input=predict, label=label, k=5)

            # configure optimize
            optimizer = None
            if is_train:

                total_images = 1281167 / trainer_count

                step = int(total_images / (args.batch_size * args.gpus) + 1)
                epochs = [30, 60, 90]
                bd = [step * e for e in epochs]
                base_lr = args.learning_rate
                lr = []
                lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
                optimizer = fluid.optimizer.Momentum(
                    learning_rate=fluid.layers.piecewise_decay(
                        boundaries=bd, values=lr),
                    momentum=0.9,
                    regularization=fluid.regularizer.L2Decay(1e-4))
                optimizer.minimize(avg_cost)

                if args.memory_optimize:
                    fluid.memory_optimize(main_prog)

    batched_reader = None
    pyreader.decorate_paddle_reader(
        paddle.batch(
            reader if args.no_random else paddle.reader.shuffle(
                reader, buf_size=5120),
            batch_size=args.batch_size))

    return avg_cost, optimizer, [batch_acc1,
                                 batch_acc5], batched_reader, pyreader

def append_nccl2_prepare(trainer_id, startup_prog):
    if trainer_id >= 0:
        # append gen_nccl_id at the end of startup program
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        port = os.getenv("PADDLE_PSERVER_PORT")
        worker_ips = os.getenv("PADDLE_TRAINER_IPS")
        worker_endpoints = []
        for ip in worker_ips.split(","):
            worker_endpoints.append(':'.join([ip, port]))
        num_trainers = len(worker_endpoints)
        current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
        worker_endpoints.remove(current_endpoint)

        nccl_id_var = startup_prog.global_block().create_var(
            name="NCCLID",
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)
        startup_prog.global_block().append_op(
            type="gen_nccl_id",
            inputs={},
            outputs={"NCCLID": nccl_id_var},
            attrs={
                "endpoint": current_endpoint,
                "endpoint_list": worker_endpoints,
                "trainer_id": trainer_id
            })
        return nccl_id_var, num_trainers, trainer_id
    else:
        raise Exception("must set positive PADDLE_TRAINER_ID env variables for "
                        "nccl-based dist train.")


def dist_transpile(trainer_id, args, train_prog, startup_prog):
    if trainer_id < 0:
        return None, None

    # the port of all pservers, needed by both trainer and pserver
    port = os.getenv("PADDLE_PSERVER_PORT", "6174")
    # comma separated ips of all pservers, needed by trainer and
    # pserver
    pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
    eplist = []
    for ip in pserver_ips.split(","):
        eplist.append(':'.join([ip, port]))
    pserver_endpoints = ",".join(eplist)
    # total number of workers/trainers in the job, needed by
    # trainer and pserver
    trainers = int(os.getenv("PADDLE_TRAINERS"))
    # the IP of the local machine, needed by pserver only
    current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
    # the role, should be either PSERVER or TRAINER
    training_role = os.getenv("PADDLE_TRAINING_ROLE")

Y
Yancey1989 已提交
148
    config = fluid.DistributeTranspilerConfig()
Y
Yancey1989 已提交
149
    config.slice_var_up = not args.no_split_var
Y
Yancey1989 已提交
150
    t = fluid.DistributeTranspiler(config=config)
Y
Yancey1989 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    t.transpile(
        trainer_id,
        # NOTE: *MUST* use train_prog, for we are using with guard to
        # generate different program for train and test.
        program=train_prog,
        pservers=pserver_endpoints,
        trainers=trainers,
        sync_mode=not args.async_mode,
        startup_program=startup_prog)
    if training_role == "PSERVER":
        pserver_program = t.get_pserver_program(current_endpoint)
        pserver_startup_program = t.get_startup_program(
            current_endpoint, pserver_program, startup_program=startup_prog)
        return pserver_program, pserver_startup_program
    elif training_role == "TRAINER":
        train_program = t.get_trainer_program()
        return train_program, startup_prog
    else:
        raise ValueError(
            'PADDLE_TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
        )


def test_parallel(exe, test_args, args, test_prog, feeder):
    acc_evaluators = []
176
    for i in six.moves.xrange(len(test_args[2])):
Y
Yancey1989 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        acc_evaluators.append(fluid.metrics.Accuracy())

    to_fetch = [v.name for v in test_args[2]]
    test_args[4].start()
    while True:
        try:
            acc_rets = exe.run(fetch_list=to_fetch)
            for i, e in enumerate(acc_evaluators):
                e.update(
                    value=np.array(acc_rets[i]), weight=args.batch_size)
        except fluid.core.EOFException as eof:
            test_args[4].reset()
            break

    return [e.eval() for e in acc_evaluators]


# NOTE: only need to benchmark using parallelexe
def train_parallel(train_args, test_args, args, train_prog, test_prog,
                   startup_prog, nccl_id_var, num_trainers, trainer_id):
    over_all_start = time.time()
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
    feeder = None

    if nccl_id_var and trainer_id == 0:
        #FIXME(wuyi): wait other trainer to start listening
        time.sleep(30)

    startup_exe = fluid.Executor(place)
    startup_exe.run(startup_prog)
    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = args.cpus
    strategy.allow_op_delay = False
    build_strategy = fluid.BuildStrategy()
    if args.reduce_strategy == "reduce":
        build_strategy.reduce_strategy = fluid.BuildStrategy(
        ).ReduceStrategy.Reduce
    else:
        build_strategy.reduce_strategy = fluid.BuildStrategy(
        ).ReduceStrategy.AllReduce

    avg_loss = train_args[0]

    if args.update_method == "pserver":
        # parameter server mode distributed training, merge
        # gradients on local server, do not initialize
        # ParallelExecutor with multi server all-reduce mode.
        num_trainers = 1
        trainer_id = 0

    exe = fluid.ParallelExecutor(
        True,
        avg_loss.name,
        main_program=train_prog,
        exec_strategy=strategy,
        build_strategy=build_strategy,
        num_trainers=num_trainers,
        trainer_id=trainer_id)

    if not args.no_test:
        if args.update_method == "pserver":
            test_scope = None
        else:
            # NOTE: use an empty scope to avoid test exe using NCCLID
            test_scope = fluid.Scope()
        test_exe = fluid.ParallelExecutor(
            True, main_program=test_prog, share_vars_from=exe)

    pyreader = train_args[4]
    for pass_id in range(args.pass_num):
        num_samples = 0
        iters = 0
        start_time = time.time()
        batch_id = 0
        pyreader.start()
        while True:
            if iters == args.iterations:
                break

            if iters == args.skip_batch_num:
                start_time = time.time()
                num_samples = 0
            fetch_list = [avg_loss.name]
            acc_name_list = [v.name for v in train_args[2]]
            fetch_list.extend(acc_name_list)

            try:
                fetch_ret = exe.run(fetch_list)
            except fluid.core.EOFException as eof:
                break
            except fluid.core.EnforceNotMet as ex:
                traceback.print_exc()
                break
            num_samples += args.batch_size * args.gpus

            iters += 1
            if batch_id % 1 == 0:
                fetched_data = [np.mean(np.array(d)) for d in fetch_ret]
                print("Pass %d, batch %d, loss %s, accucacys: %s" %
                      (pass_id, batch_id, fetched_data[0], fetched_data[1:]))
            batch_id += 1

        print_train_time(start_time, time.time(), num_samples)
        pyreader.reset() # reset reader handle

        if not args.no_test and test_args[2]:
            test_feeder = None
            test_ret = test_parallel(test_exe, test_args, args, test_prog,
                                     test_feeder)
            print("Pass: %d, Test Accuracy: %s\n" %
                  (pass_id, [np.mean(np.array(v)) for v in test_ret]))

    startup_exe.close()
    print("total train time: ", time.time() - over_all_start)


def print_arguments(args):
    print('----------- Configuration Arguments -----------')
295
    for arg, value in sorted(six.iteritems(vars(args))):
Y
Yancey1989 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def print_train_time(start_time, end_time, num_samples):
    train_elapsed = end_time - start_time
    examples_per_sec = num_samples / train_elapsed
    print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
          (num_samples, train_elapsed, examples_per_sec))


def print_paddle_envs():
    print('----------- Configuration envs -----------')
    for k in os.environ:
        if "PADDLE_" in k:
311
            print("ENV %s:%s" % (k, os.environ[k]))
Y
Yancey1989 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    print('------------------------------------------------')


def main():
    args = parse_args()
    print_arguments(args)
    print_paddle_envs()
    if args.no_random:
        fluid.default_startup_program().random_seed = 1

    # the unique trainer id, starting from 0, needed by trainer
    # only
    nccl_id_var, num_trainers, trainer_id = (
        None, 1, int(os.getenv("PADDLE_TRAINER_ID", "0")))

    train_prog = fluid.Program()
    test_prog = fluid.Program()
    startup_prog = fluid.Program()

    train_args = list(get_model(args, True, train_prog, startup_prog))
    test_args = list(get_model(args, False, test_prog, startup_prog))

    all_args = [train_args, test_args, args]

    if args.update_method == "pserver":
        train_prog, startup_prog = dist_transpile(trainer_id, args, train_prog,
                                                  startup_prog)
        if not train_prog:
            raise Exception(
                "Must configure correct environments to run dist train.")
        all_args.extend([train_prog, test_prog, startup_prog])
        if args.gpus > 1 and os.getenv("PADDLE_TRAINING_ROLE") == "TRAINER":
            all_args.extend([nccl_id_var, num_trainers, trainer_id])
            train_parallel(*all_args)
        elif os.getenv("PADDLE_TRAINING_ROLE") == "PSERVER":
            # start pserver with Executor
            server_exe = fluid.Executor(fluid.CPUPlace())
            server_exe.run(startup_prog)
            server_exe.run(train_prog)
        exit(0)

    # for other update methods, use default programs
    all_args.extend([train_prog, test_prog, startup_prog])

    if args.update_method == "nccl2":
        nccl_id_var, num_trainers, trainer_id = append_nccl2_prepare(
            trainer_id, startup_prog)

    all_args.extend([nccl_id_var, num_trainers, trainer_id])
    train_parallel(*all_args)

if __name__ == "__main__":
    main()