test_mfcc_librosa_compat.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools

import librosa
import numpy as np
import paddle
import paddleaudio
import pytest
from utils import load_example_audio1

eps_float32 = 1e-3
eps_float64 = 2.2e-5
# Pre-loading to speed up the test
signal, _ = load_example_audio1()
signal_tensor = paddle.to_tensor(signal)


def generate_mfcc_test():
    sr = [16000]
    n_fft = [512]  #, 1024]
    hop_length = [160]  #, 400]
    win_length = [512]
    window = ['hann']  # 'hamming', ('gaussian', 50)]
    center = [True]  #, False]
    pad_mode = ['reflect', 'constant']
    power = [2.0]
    n_mels = [64]  #32]
    fmin = [0, 10]
    fmax = [8000, None]
    dtype = ['float32', 'float64']
    device = ['gpu', 'cpu']
    n_mfcc = [40, 20]
    htk = [True]
    args = [
        sr, n_fft, hop_length, win_length, window, center, pad_mode, power,
        n_mels, fmin, fmax, dtype, device, n_mfcc, htk
    ]
    return itertools.product(*args)


@pytest.mark.parametrize(
    'sr, n_fft, hop_length, win_length, window, center, pad_mode, power,\
        n_mels, fmin, fmax,dtype,device,n_mfcc,htk', generate_mfcc_test())
def test_mfcc_case(sr, n_fft, hop_length, win_length, window, center, pad_mode, power,\
        n_mels, fmin, fmax,dtype,device,n_mfcc,htk):
    # paddle.set_device(device)
    # hop_length = 160
    # win_length = 512
    # window = 'hann'
    # pad_mode = 'constant'
    # power = 2.0
    # sample_rate = 16000
    # center = True
    # f_min = 0.0

    # for librosa, the norm is default to 'slaney'
    expected = librosa.feature.mfcc(signal,
                                    sr=sr,
                                    n_mfcc=n_mfcc,
                                    n_fft=win_length,
                                    hop_length=hop_length,
                                    win_length=win_length,
                                    window=window,
                                    center=center,
                                    n_mels=n_mels,
                                    pad_mode=pad_mode,
                                    fmin=fmin,
                                    fmax=fmax,
                                    htk=htk,
                                    power=2.0)

    paddle_mfcc = paddleaudio.functional.mfcc(signal_tensor,
                                              sr=sr,
                                              n_mfcc=n_mfcc,
                                              n_fft=win_length,
                                              hop_length=hop_length,
                                              win_length=win_length,
                                              window=window,
                                              center=center,
                                              n_mels=n_mels,
                                              pad_mode=pad_mode,
                                              f_min=fmin,
                                              f_max=fmax,
                                              htk=htk,
                                              norm='slaney',
                                              dtype=dtype)

    paddle_librosa_diff = np.mean(np.abs(expected - paddle_mfcc.numpy()))
    if dtype == 'float64':
        assert paddle_librosa_diff < eps_float64
    else:
        assert paddle_librosa_diff < eps_float32

    try:  # if we have torchaudio installed
        import torch
        import torchaudio
        kwargs = {
            'n_fft': win_length,
            'hop_length': hop_length,
            'win_length': win_length,
            # 'window':window,
            'center': center,
            'n_mels': n_mels,
            'pad_mode': pad_mode,
            'f_min': fmin,
            'f_max': fmax,
            'mel_scale': 'htk',
            'norm': 'slaney',
            'power': 2.0
        }
        torch_mfcc_transform = torchaudio.transforms.MFCC(n_mfcc=20,
                                                          log_mels=False,
                                                          melkwargs=kwargs)
        torch_mfcc = torch_mfcc_transform(torch.tensor(signal))
        paddle_torch_mfcc_diff = np.mean(
            np.abs(paddle_mfcc.numpy() - torch_mfcc.numpy()))
        assert paddle_torch_mfcc_diff < 5e-5
        torch_librosa_mfcc_diff = np.mean(np.abs(torch_mfcc.numpy() - expected))
        assert torch_librosa_mfcc_diff < 5e-5
    except:
        pass


#test_mfcc_case(512, 40, 20, True, 8000, 'cpu','float64',eps_float64)