trainer.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from model import *
import paddle.fluid as fluid

step_per_epoch = 2974
lambda_A = 10.0
lambda_B = 10.0
lambda_identity = 0.5


class Cycle_Gan(fluid.dygraph.Layer):
    def __init__(self, name_scope,istrain=True):
        super (Cycle_Gan, self).__init__(name_scope)

        self.build_generator_resnet_9blocks_a = build_generator_resnet_9blocks(self.full_name())
        self.build_generator_resnet_9blocks_b = build_generator_resnet_9blocks(self.full_name())
        if istrain:
            self.build_gen_discriminator_a = build_gen_discriminator(self.full_name())
            self.build_gen_discriminator_b = build_gen_discriminator(self.full_name())

    def forward(self,input_A,input_B,is_G,is_DA,is_DB):

        if is_G:
            fake_B = self.build_generator_resnet_9blocks_a(input_A)
            fake_A = self.build_generator_resnet_9blocks_b(input_B)
            cyc_A = self.build_generator_resnet_9blocks_b(fake_B)
            cyc_B = self.build_generator_resnet_9blocks_a(fake_A)

            diff_A = fluid.layers.abs(
                fluid.layers.elementwise_sub(
                    x=input_A,y=cyc_A))
            diff_B = fluid.layers.abs(
                fluid.layers.elementwise_sub(
                    x=input_B, y=cyc_B))
            cyc_A_loss = fluid.layers.reduce_mean(diff_A) * lambda_A
            cyc_B_loss = fluid.layers.reduce_mean(diff_B) * lambda_B
            cyc_loss = cyc_A_loss + cyc_B_loss

            fake_rec_A = self.build_gen_discriminator_a(fake_B)
            g_A_loss = fluid.layers.reduce_mean(fluid.layers.square(fake_rec_A-1))
         
            fake_rec_B = self.build_gen_discriminator_b(fake_A)
            g_B_loss = fluid.layers.reduce_mean(fluid.layers.square(fake_rec_B-1))
            G = g_A_loss + g_B_loss
            idt_A = self.build_generator_resnet_9blocks_a(input_B)
X
xiaoting 已提交
62
            idt_loss_A = fluid.layers.reduce_mean(fluid.layers.abs(fluid.layers.elementwise_sub(x = input_B , y = idt_A))) * lambda_B * lambda_identity
X
xiaoting 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

            idt_B = self.build_generator_resnet_9blocks_b(input_A)
            idt_loss_B = fluid.layers.reduce_mean(fluid.layers.abs(fluid.layers.elementwise_sub(x = input_A , y = idt_B))) * lambda_A * lambda_identity
            idt_loss = fluid.layers.elementwise_add(idt_loss_A,idt_loss_B)
            g_loss = cyc_loss + G + idt_loss
            return fake_A,fake_B,cyc_A,cyc_B,g_A_loss,g_B_loss,idt_loss_A,idt_loss_B,cyc_A_loss,cyc_B_loss,g_loss


        if is_DA:

            ### D
            rec_B = self.build_gen_discriminator_a(input_A)
            fake_pool_rec_B = self.build_gen_discriminator_a(input_B)
            
            return rec_B, fake_pool_rec_B

        if is_DB:

            rec_A = self.build_gen_discriminator_b(input_A)

            fake_pool_rec_A = self.build_gen_discriminator_b(input_B)


        return rec_A, fake_pool_rec_A