optimizer.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging

from paddle import fluid

import paddle.fluid.optimizer as optimizer
import paddle.fluid.regularizer as regularizer

from ppdet.core.workspace import register, serializable

__all__ = ['LearningRate', 'OptimizerBuilder']

logger = logging.getLogger(__name__)


@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
        gamma (float): decay factor
        milestones (list): steps at which to decay learning rate
    """

    def __init__(self, gamma=0.1, milestones=[6000, 8000], values=None):
        super(PiecewiseDecay, self).__init__()
        self.gamma = gamma
        self.milestones = milestones
        self.values = values

    def __call__(self, base_lr=None, learning_rate=None):
        if self.values is not None:
            return fluid.layers.piecewise_decay(self.milestones, self.values)
        assert base_lr is not None, "either base LR or values should be provided"
        values = [base_lr]
        lr = base_lr
        for _ in self.milestones:
            lr *= self.gamma
            values.append(lr)
        return fluid.layers.piecewise_decay(self.milestones, values)


@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
    """

    def __init__(self, steps=500, start_factor=1. / 3):
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor

    def __call__(self, base_lr, learning_rate):
        start_lr = base_lr * self.start_factor

        return fluid.layers.linear_lr_warmup(
            learning_rate=learning_rate,
            warmup_steps=self.steps,
            start_lr=start_lr,
            end_lr=base_lr)


@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
        self.schedulers = schedulers

    def __call__(self):
        lr = None
        for sched in self.schedulers:
            lr = sched(self.base_lr, lr)
        return lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles

    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
        self.regularizer = regularizer
        self.optimizer = optimizer

    def __call__(self, learning_rate):
        reg_type = self.regularizer['type'] + 'Decay'
        reg_factor = self.regularizer['factor']
        regularization = getattr(regularizer, reg_type)(reg_factor)

        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
        op = getattr(optimizer, optim_type)
        return op(learning_rate=learning_rate,
                  regularization=regularization,
                  **optim_args)