labelme2coco.py 9.0 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#!/usr/bin/env python
# coding: utf-8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import glob
import json
import os
import os.path as osp
import sys
import shutil

import numpy as np
import PIL.ImageDraw


class MyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return super(MyEncoder, self).default(obj)


def getbbox(self, points):
    polygons = points
    mask = self.polygons_to_mask([self.height, self.width], polygons)
    return self.mask2box(mask)


def images(data, num):
    image = {}
    image['height'] = data['imageHeight']
    image['width'] = data['imageWidth']
    image['id'] = num + 1
    image['file_name'] = data['imagePath'].split('/')[-1]
    return image


def categories(label, labels_list):
    category = {}
    category['supercategory'] = 'component'
    category['id'] = len(labels_list) + 1
    category['name'] = label
    return category


def annotations_rectangle(points, label, num, label_to_num):
    annotation = {}
    seg_points = np.asarray(points).copy()
    seg_points[1, :] = np.asarray(points)[2, :]
    seg_points[2, :] = np.asarray(points)[1, :]
    annotation['segmentation'] = [list(seg_points.flatten())]
    annotation['iscrowd'] = 0
    annotation['image_id'] = num + 1
    annotation['bbox'] = list(
        map(float, [
            points[0][0], points[0][1], points[1][0] - points[0][0], points[1][
                1] - points[0][1]
        ]))
    annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
    annotation['category_id'] = label_to_num[label]
    annotation['id'] = num + 1
    return annotation


def annotations_polygon(height, width, points, label, num, label_to_num):
    annotation = {}
    annotation['segmentation'] = [list(np.asarray(points).flatten())]
    annotation['iscrowd'] = 0
    annotation['image_id'] = num + 1
    annotation['bbox'] = list(map(float, get_bbox(height, width, points)))
    annotation['area'] = annotation['bbox'][2] * annotation['bbox'][3]
    annotation['category_id'] = label_to_num[label]
    annotation['id'] = num + 1
    return annotation


def get_bbox(height, width, points):
    polygons = points
    mask = np.zeros([height, width], dtype=np.uint8)
    mask = PIL.Image.fromarray(mask)
    xy = list(map(tuple, polygons))
    PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
    mask = np.array(mask, dtype=bool)
    index = np.argwhere(mask == 1)
    rows = index[:, 0]
    clos = index[:, 1]
    left_top_r = np.min(rows)
    left_top_c = np.min(clos)
    right_bottom_r = np.max(rows)
    right_bottom_c = np.max(clos)
    return [
        left_top_c, left_top_r, right_bottom_c - left_top_c,
        right_bottom_r - left_top_r
    ]


def deal_json(img_path, json_path):
    data_coco = {}
    label_to_num = {}
    images_list = []
    categories_list = []
    annotations_list = []
    labels_list = []
    num = -1
    for img_file in os.listdir(img_path):
        img_label = img_file.split('.')[0]
        label_file = osp.join(json_path, img_label + '.json')
        print('Generating dataset from:', label_file)
        num = num + 1
        with open(label_file) as f:
            data = json.load(f)
            images_list.append(images(data, num))
            for shapes in data['shapes']:
                label = shapes['label']
                if label not in labels_list:
                    categories_list.append(categories(label, labels_list))
                    labels_list.append(label)
                    label_to_num[label] = len(labels_list)
                points = shapes['points']
                p_type = shapes['shape_type']
                if p_type == 'polygon':
                    annotations_list.append(
                        annotations_polygon(data['imageHeight'], data[
                            'imageWidth'], points, label, num, label_to_num))

                if p_type == 'rectangle':
                    points.append([points[0][0], points[1][1]])
                    points.append([points[1][0], points[0][1]])
                    annotations_list.append(
                        annotations_rectangle(points, label, num, label_to_num))
    data_coco['images'] = images_list
    data_coco['categories'] = categories_list
    data_coco['annotations'] = annotations_list
    return data_coco


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--json_input_dir', help='input annotated directory')
    parser.add_argument('--image_input_dir', help='image directory')
    parser.add_argument(
        '--output_dir', help='output dataset directory', default='../../../')
    parser.add_argument(
        '--train_proportion',
        help='the proportion of train dataset',
        type=float,
        default=1.0)
    parser.add_argument(
        '--val_proportion',
        help='the proportion of validation dataset',
        type=float,
        default=0.0)
    parser.add_argument(
        '--test_proportion',
        help='the proportion of test dataset',
        type=float,
        default=0.0)
    args = parser.parse_args()
    try:
        assert os.path.exists(args.json_input_dir)
    except AssertionError as e:
        print('The json folder does not exist!')
        os._exit(0)
    try:
        assert os.path.exists(args.image_input_dir)
    except AssertionError as e:
        print('The image folder does not exist!')
        os._exit(0)
    try:
        assert args.train_proportion + args.val_proportion + args.test_proportion == 1.0
    except AssertionError as e:
        print(
            'The sum of pqoportion of training, validation and test datase must be 1!'
        )
        os._exit(0)

    # Allocate the dataset.
    total_num = len(glob.glob(osp.join(args.json_input_dir, '*.json')))
    if args.train_proportion != 0:
        train_num = int(total_num * args.train_proportion)
        os.makedirs(args.output_dir + '/train')
    else:
        train_num = 0
    if args.val_proportion == 0.0:
        val_num = 0
        test_num = total_num - train_num
        if args.test_proportion != 0.0:
            os.makedirs(args.output_dir + '/test')
    else:
        val_num = int(total_num * args.val_proportion)
        test_num = total_num - train_num - val_num
        os.makedirs(args.output_dir + '/val')
        if args.test_proportion != 0.0:
            os.makedirs(args.output_dir + '/test')
    count = 1
    for img_name in os.listdir(args.image_input_dir):
        if count <= train_num:
            shutil.copyfile(
                osp.join(args.image_input_dir, img_name),
                osp.join(args.output_dir + '/train/', img_name))
        else:
            if count <= train_num + val_num:
                shutil.copyfile(
                    osp.join(args.image_input_dir, img_name),
                    osp.join(args.output_dir + '/val/', img_name))
            else:
                shutil.copyfile(
                    osp.join(args.image_input_dir, img_name),
                    osp.join(args.output_dir + '/test/', img_name))
        count = count + 1

    # Deal with the json files.
    if not os.path.exists(args.output_dir + '/annotations'):
        os.makedirs(args.output_dir + '/annotations')
    if args.train_proportion != 0:
        train_data_coco = deal_json(args.output_dir + '/train',
                                    args.json_input_dir)
        train_json_path = osp.join(args.output_dir + '/annotations',
                                   'instance_train.json')
        json.dump(
            train_data_coco,
            open(train_json_path, 'w'),
            indent=4,
            cls=MyEncoder)
    if args.val_proportion != 0:
        val_data_coco = deal_json(args.output_dir + '/val', args.json_input_dir)
        val_json_path = osp.join(args.output_dir + '/annotations',
                                 'instance_val.json')
        json.dump(
            val_data_coco, open(val_json_path, 'w'), indent=4, cls=MyEncoder)
    if args.test_proportion != 0:
        test_data_coco = deal_json(args.output_dir + '/test',
                                   args.json_input_dir)
        test_json_path = osp.join(args.output_dir + '/annotations',
                                  'instance_test.json')
        json.dump(
            test_data_coco, open(test_json_path, 'w'), indent=4, cls=MyEncoder)

if __name__ == '__main__':
    main()