# for distillation #-------------------- export CUDA_VISIBLE_DEVICES=0 python compress.py \ --model "MobileNet" \ --teacher_model "ResNet50" \ --teacher_pretrained_model ./data/pretrain/ResNet50_pretrained \ --compress_config ./configs/mobilenetv1_resnet50_distillation.yaml # for sensitivity filter pruning #--------------------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--model "MobileNet" \ #--pretrained_model ./data/pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/filter_pruning_sen.yaml # for uniform filter pruning #--------------------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--model "MobileNet" \ #--pretrained_model ./data/pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/filter_pruning_uniform.yaml # for quantization #--------------------------- #export CUDA_VISIBLE_DEVICES=0 #python compress.py \ #--batch_size 64 \ #--model "MobileNet" \ #--pretrained_model ./data/pretrain/MobileNetV1_pretrained \ #--compress_config ./configs/quantization.yaml