train.py 6.2 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

Z
zhengya01 已提交
15
import os
H
hutuxian 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
import sys
import logging
import time
import numpy as np
import argparse
import paddle.fluid as fluid
import paddle
import time
import network
import reader
import random

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser("din")
    parser.add_argument(
        '--config_path', type=str, default='data/config.txt', help='dir of config')
    parser.add_argument(
        '--train_dir', type=str, default='data/paddle_train.txt', help='dir of train file')
    parser.add_argument(
        '--model_dir', type=str, default='din_amazon', help='dir of saved model')
    parser.add_argument(
        '--batch_size', type=int, default=16, help='number of batch size')
    parser.add_argument(
        '--epoch_num', type=int, default=200, help='number of epoch')
    parser.add_argument(
        '--use_cuda', type=int, default=0, help='whether to use gpu')
    parser.add_argument(
        '--parallel', type=int, default=0, help='whether to use parallel executor')
    parser.add_argument(
        '--base_lr', type=float, default=0.85, help='based learning rate')
    parser.add_argument(
        '--num_devices', type=int, default=1, help='Number of GPU devices')
Z
zhengya01 已提交
53 54 55 56
    parser.add_argument(
        '--enable_ce', action='store_true', help='If set, run the task with continuous evaluation logs.')
    parser.add_argument(
        '--batch_num', type=int, help="batch num for ce")
H
hutuxian 已提交
57 58 59 60 61 62 63
    args = parser.parse_args()
    return args


def train():
    args = parse_args()

Z
zhengya01 已提交
64 65 66 67 68
    if args.enable_ce:
        SEED = 102
        fluid.default_main_program().random_seed = SEED
        fluid.default_startup_program().random_seed = SEED

H
hutuxian 已提交
69 70 71 72 73 74 75 76 77 78 79 80
    config_path = args.config_path
    train_path = args.train_dir
    epoch_num = args.epoch_num
    use_cuda = True if args.use_cuda else False
    use_parallel = True if args.parallel else False

    logger.info("reading data begins")
    user_count, item_count, cat_count = reader.config_read(config_path)
    data_reader, max_len = reader.prepare_reader(train_path, args.batch_size *
                                                 args.num_devices)
    logger.info("reading data completes")

H
hutuxian 已提交
81
    avg_cost, pred = network.network(item_count, cat_count, max_len)
H
hutuxian 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm(
        clip_norm=5.0))
    base_lr = args.base_lr
    boundaries = [410000]
    values = [base_lr, 0.2]
    sgd_optimizer = fluid.optimizer.SGD(
        learning_rate=fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values))
    sgd_optimizer.minimize(avg_cost)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    feeder = fluid.DataFeeder(
        feed_list=[
            "hist_item_seq", "hist_cat_seq", "target_item", "target_cat",
            "label", "mask", "target_item_seq", "target_cat_seq"
        ],
        place=place)
    if use_parallel:
        train_exe = fluid.ParallelExecutor(
            use_cuda=use_cuda, loss_name=avg_cost.name)
    else:
        train_exe = exe

    logger.info("train begins")

    global_step = 0
    PRINT_STEP = 1000

Z
zhengya01 已提交
114 115
    total_time = []
    ce_info = []
H
hutuxian 已提交
116 117 118 119 120 121 122 123 124 125 126 127
    start_time = time.time()
    loss_sum = 0.0
    for id in range(epoch_num):
        epoch = id + 1
        for data in data_reader():
            global_step += 1
            results = train_exe.run(feed=feeder.feed(data),
                                    fetch_list=[avg_cost.name, pred.name],
                                    return_numpy=True)
            loss_sum += results[0].mean()

            if global_step % PRINT_STEP == 0:
Z
zhengya01 已提交
128 129
                ce_info.append(loss_sum / PRINT_STEP)
                total_time.append(time.time() - start_time)
H
hutuxian 已提交
130 131 132 133 134 135 136 137
                logger.info(
                    "epoch: %d\tglobal_step: %d\ttrain_loss: %.4f\t\ttime: %.2f"
                    % (epoch, global_step, loss_sum / PRINT_STEP,
                       time.time() - start_time))
                start_time = time.time()
                loss_sum = 0.0

                if (global_step > 400000 and global_step % PRINT_STEP == 0) or (
138
                        global_step <= 400000 and global_step % 50000 == 0):
139
                    save_dir = os.path.join(args.model_dir, "global_step_" + str(
H
hutuxian 已提交
140
                        global_step))
H
hutuxian 已提交
141 142 143 144 145 146 147 148 149
                    feed_var_name = [
                        "hist_item_seq", "hist_cat_seq", "target_item",
                        "target_cat", "label", "mask", "target_item_seq",
                        "target_cat_seq"
                    ]
                    fetch_vars = [avg_cost, pred]
                    fluid.io.save_inference_model(save_dir, feed_var_name,
                                                  fetch_vars, exe)
                    logger.info("model saved in " + save_dir)
Z
zhengya01 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            if args.enable_ce and global_step >= args.batch_num:
                break
    # only for ce
    if args.enable_ce:
        gpu_num = get_cards(args)
        ce_loss = 0
        ce_time = 0
        try:
            ce_loss = ce_info[-1]
            ce_time = total_time[-1]
        except:
            print("ce info error")
        print("kpis\teach_pass_duration_card%s\t%s" %
                    (gpu_num, ce_time))
        print("kpis\ttrain_loss_card%s\t%s" %
                    (gpu_num, ce_loss))


def get_cards(args):
    if args.enable_ce:
        cards = os.environ.get('CUDA_VISIBLE_DEVICES')
        num = len(cards.split(","))
        return num
    else:
        return args.num_devices
H
hutuxian 已提交
175 176 177 178


if __name__ == "__main__":
    train()