optimization.py 6.3 KB
Newer Older
K
kgresearch 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimization and learning rate scheduling."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import

import numpy as np
import paddle.fluid as fluid
from utils.fp16 import create_master_params_grads, master_param_to_train_param, apply_dynamic_loss_scaling


def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps):
    """ Applies linear warmup of learning rate from 0 and decay to 0."""
    with fluid.default_main_program()._lr_schedule_guard():
        lr = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="scheduled_learning_rate")

        global_step = fluid.layers.learning_rate_scheduler._decay_step_counter()

        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(global_step < warmup_steps):
                warmup_lr = learning_rate * (global_step / warmup_steps)
                fluid.layers.tensor.assign(warmup_lr, lr)
            with switch.default():
                decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay(
                    learning_rate=learning_rate,
                    decay_steps=num_train_steps,
                    end_learning_rate=0.0,
                    power=1.0,
                    cycle=False)
                fluid.layers.tensor.assign(decayed_lr, lr)

        return lr


def optimization(loss,
                 warmup_steps,
                 num_train_steps,
                 learning_rate,
                 train_program,
                 startup_prog,
                 weight_decay,
                 scheduler='linear_warmup_decay',
                 use_fp16=False,
                 use_dynamic_loss_scaling=False,
                 init_loss_scaling=1.0,
                 incr_every_n_steps=1000,
                 decr_every_n_nan_or_inf=2,
                 incr_ratio=2.0,
                 decr_ratio=0.8):
    if warmup_steps > 0:
        if scheduler == 'noam_decay':
            scheduled_lr = fluid.layers.learning_rate_scheduler\
             .noam_decay(1/(warmup_steps *(learning_rate ** 2)),
                         warmup_steps)
        elif scheduler == 'linear_warmup_decay':
            scheduled_lr = linear_warmup_decay(learning_rate, warmup_steps,
                                               num_train_steps)
        else:
            raise ValueError("Unkown learning rate scheduler, should be "
                             "'noam_decay' or 'linear_warmup_decay'")
        optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr)
    else:
        scheduled_lr = fluid.layers.create_global_var(
            name=fluid.unique_name.generate("learning_rate"),
            shape=[1],
            value=learning_rate,
            dtype='float32',
            persistable=True)
        optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr)
        optimizer._learning_rate_map[fluid.default_main_program(
        )] = scheduled_lr

    fluid.clip.set_gradient_clip(
        clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0))

    def exclude_from_weight_decay(name):
        if name.find("layer_norm") > -1:
            return True
        bias_suffix = ["_bias", "_b", ".b_0"]
        for suffix in bias_suffix:
            if name.endswith(suffix):
                return True
        return False

    param_list = dict()

    loss_scaling = fluid.layers.create_global_var(
        name=fluid.unique_name.generate("loss_scaling"),
        shape=[1],
        value=init_loss_scaling,
        dtype='float32',
        persistable=True)

    if use_fp16:
        loss *= loss_scaling
        param_grads = optimizer.backward(loss)

        master_param_grads = create_master_params_grads(
            param_grads, train_program, startup_prog, loss_scaling)

        for param, _ in master_param_grads:
            param_list[param.name] = param * 1.0
            param_list[param.name].stop_gradient = True

        if use_dynamic_loss_scaling:
            apply_dynamic_loss_scaling(
                loss_scaling, master_param_grads, incr_every_n_steps,
                decr_every_n_nan_or_inf, incr_ratio, decr_ratio)

        optimizer.apply_gradients(master_param_grads)

        if weight_decay > 0:
            for param, grad in master_param_grads:
                if exclude_from_weight_decay(param.name.rstrip(".master")):
                    continue
                with param.block.program._optimized_guard(
                    [param, grad]), fluid.framework.name_scope("weight_decay"):
                    updated_param = param - param_list[
                        param.name] * weight_decay * scheduled_lr
                    fluid.layers.assign(output=param, input=updated_param)

        master_param_to_train_param(master_param_grads, param_grads,
                                    train_program)

    else:
        for param in train_program.global_block().all_parameters():
            param_list[param.name] = param * 1.0
            param_list[param.name].stop_gradient = True

        _, param_grads = optimizer.minimize(loss)

        if weight_decay > 0:
            for param, grad in param_grads:
                if exclude_from_weight_decay(param.name):
                    continue
                with param.block.program._optimized_guard(
                    [param, grad]), fluid.framework.name_scope("weight_decay"):
                    updated_param = param - param_list[
                        param.name] * weight_decay * scheduled_lr
                    fluid.layers.assign(output=param, input=updated_param)

    return scheduled_lr, loss_scaling