train_mixup.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from learning_rate import cosine_decay
import numpy as np
import argparse
from model import NetworkCIFAR as Network
import reader
import sys
import os
import time
import logging
import genotypes
import paddle.fluid as fluid
import shutil
import utils
import cPickle as cp

parser = argparse.ArgumentParser("cifar")
parser.add_argument(
    '--data',
    type=str,
    default='./dataset/cifar/cifar-10-batches-py/',
    help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=96, help='batch size')
parser.add_argument(
    '--learning_rate', type=float, default=0.025, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument(
    '--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument(
    '--report_freq', type=float, default=50, help='report frequency')
parser.add_argument(
    '--epochs', type=int, default=600, help='num of training epochs')
parser.add_argument(
    '--init_channels', type=int, default=36, help='num of init channels')
parser.add_argument(
    '--layers', type=int, default=20, help='total number of layers')
parser.add_argument(
    '--model_path',
    type=str,
    default='saved_models',
    help='path to save the model')
parser.add_argument(
    '--auxiliary',
    action='store_true',
    default=False,
    help='use auxiliary tower')
parser.add_argument(
    '--auxiliary_weight',
    type=float,
    default=0.4,
    help='weight for auxiliary loss')
parser.add_argument(
    '--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument(
    '--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument(
    '--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument(
    '--arch', type=str, default='DARTS', help='which architecture to use')
parser.add_argument(
    '--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument(
    '--lr_exp_decay',
    action='store_true',
    default=False,
    help='use exponential_decay learning_rate')
parser.add_argument('--mix_alpha', type=float, default=0.5, help='mixup alpha')
parser.add_argument(
    '--lrc_loss_lambda', default=0, type=float, help='lrc_loss_lambda')
parser.add_argument(
    '--loss_type',
    default=1,
    type=float,
    help='loss_type 0: cross entropy 1: multi margin loss 2: max margin loss')

args = parser.parse_args()

CIFAR_CLASSES = 10
dataset_train_size = 50000
image_size = 32


def main():
    image_shape = [3, image_size, image_size]
    devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
    devices_num = len(devices.split(","))
    logging.info("args = %s", args)
    genotype = eval("genotypes.%s" % args.arch)
    model = Network(args.init_channels, CIFAR_CLASSES, args.layers,
                    args.auxiliary, genotype)
    steps_one_epoch = dataset_train_size / (devices_num * args.batch_size)
    train(model, args, image_shape, steps_one_epoch)


def build_program(main_prog, startup_prog, args, is_train, model, im_shape,
                  steps_one_epoch):
    out = []
    with fluid.program_guard(main_prog, startup_prog):
        py_reader = model.build_input(im_shape, args.batch_size, is_train)
        if is_train:
            with fluid.unique_name.guard():
                loss = model.train_model(py_reader, args.init_channels,
                                         args.auxiliary, args.auxiliary_weight,
                                         args.batch_size, args.lrc_loss_lambda)
                optimizer = fluid.optimizer.Momentum(
                        learning_rate=cosine_decay(args.learning_rate, \
                            args.epochs, steps_one_epoch),
                        regularization=fluid.regularizer.L2Decay(\
                            args.weight_decay),
                        momentum=args.momentum)
                optimizer.minimize(loss)
                out = [py_reader, loss]
        else:
            with fluid.unique_name.guard():
                loss, acc_1, acc_5 = model.test_model(py_reader,
                                                      args.init_channels)
                out = [py_reader, loss, acc_1, acc_5]
    return out


def train(model, args, im_shape, steps_one_epoch):
    train_startup_prog = fluid.Program()
    test_startup_prog = fluid.Program()
    train_prog = fluid.Program()
    test_prog = fluid.Program()

    train_py_reader, loss_train = build_program(train_prog, train_startup_prog,
                                                args, True, model, im_shape,
                                                steps_one_epoch)

    test_py_reader, loss_test, acc_1, acc_5 = build_program(
        test_prog, test_startup_prog, args, False, model, im_shape,
        steps_one_epoch)

    test_prog = test_prog.clone(for_test=True)

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(train_startup_prog)
    exe.run(test_startup_prog)

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = 1
    train_exe = fluid.ParallelExecutor(
        main_program=train_prog,
        use_cuda=True,
        loss_name=loss_train.name,
        exec_strategy=exec_strategy)
    train_reader = reader.train10(args)
    test_reader = reader.test10(args)
    train_py_reader.decorate_paddle_reader(train_reader)
    test_py_reader.decorate_paddle_reader(test_reader)

    fluid.clip.set_gradient_clip(fluid.clip.GradientClipByNorm(args.grad_clip))
    fluid.memory_optimize(fluid.default_main_program())

    def save_model(postfix, main_prog):
        model_path = os.path.join(args.model_path, postfix)
        if os.path.isdir(model_path):
            shutil.rmtree(model_path)
        fluid.io.save_persistables(exe, model_path, main_program=main_prog)

    def test(epoch_id):
        test_fetch_list = [loss_test, acc_1, acc_5]
        objs = utils.AvgrageMeter()
        top1 = utils.AvgrageMeter()
        top5 = utils.AvgrageMeter()
        test_py_reader.start()
        test_start_time = time.time()
        step_id = 0
        try:
            while True:
                prev_test_start_time = test_start_time
                test_start_time = time.time()
                loss_test_v, acc_1_v, acc_5_v = exe.run(
                    test_prog, fetch_list=test_fetch_list)
                objs.update(np.array(loss_test_v), args.batch_size)
                top1.update(np.array(acc_1_v), args.batch_size)
                top5.update(np.array(acc_5_v), args.batch_size)
                if step_id % args.report_freq == 0:
                    print("Epoch {}, Step {}, acc_1 {}, acc_5 {}, time {}".
                          format(epoch_id, step_id,
                                 np.array(acc_1_v),
                                 np.array(acc_5_v), test_start_time -
                                 prev_test_start_time))
                step_id += 1
        except fluid.core.EOFException:
            test_py_reader.reset()
        print("Epoch {0}, top1 {1}, top5 {2}".format(epoch_id, top1.avg,
                                                     top5.avg))

    train_fetch_list = [loss_train]
    epoch_start_time = time.time()
    for epoch_id in range(args.epochs):
        model.drop_path_prob = args.drop_path_prob * epoch_id / args.epochs
        train_py_reader.start()
        epoch_end_time = time.time()
        if epoch_id > 0:
            print("Epoch {}, total time {}".format(epoch_id - 1, epoch_end_time
                                                   - epoch_start_time))
        epoch_start_time = epoch_end_time
        epoch_end_time
        start_time = time.time()
        step_id = 0
        try:
            while True:
                prev_start_time = start_time
                start_time = time.time()
                loss_v, = train_exe.run(
                    fetch_list=[v.name for v in train_fetch_list])
                print("Epoch {}, Step {}, loss {}, time {}".format(epoch_id, step_id, \
                        np.array(loss_v).mean(), start_time-prev_start_time))
                step_id += 1
                sys.stdout.flush()
        except fluid.core.EOFException:
            train_py_reader.reset()
        if epoch_id % 50 == 0 or epoch_id == args.epochs - 1:
            save_model(str(epoch_id), train_prog)
        test(epoch_id)


if __name__ == '__main__':
    main()