reader.py 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import sys
import os
import math
import random
import functools
import numpy as np
import cv2

import paddle
from paddle import fluid
from utils.autoaugment import ImageNetPolicy
from PIL import Image

policy = None

random.seed(0)
np.random.seed(0)


def rotate_image(img):
    """rotate image

    Args:
        img: image data

    Returns:
        rotated image data
    """
    (h, w) = img.shape[:2]
    center = (w / 2, h / 2)
    angle = np.random.randint(-10, 11)
    M = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated = cv2.warpAffine(img, M, (w, h))
    return rotated


def random_crop(img, size, settings, scale=None, ratio=None,
                interpolation=None):
    """random crop image
        
    Args:
        img: image data
        size: crop size
        settings: arguments
        scale: scale parameter
        ratio: ratio parameter

    Returns:
        random cropped image data
    """
    lower_scale = settings.lower_scale
    lower_ratio = settings.lower_ratio
    upper_ratio = settings.upper_ratio
    scale = [lower_scale, 1.0] if scale is None else scale
    ratio = [lower_ratio, upper_ratio] if ratio is None else ratio

    aspect_ratio = math.sqrt(np.random.uniform(*ratio))
    w = 1. * aspect_ratio
    h = 1. / aspect_ratio

    bound = min((float(img.shape[0]) / img.shape[1]) / (h**2),
                (float(img.shape[1]) / img.shape[0]) / (w**2))

    scale_max = min(scale[1], bound)
    scale_min = min(scale[0], bound)

    target_area = img.shape[0] * img.shape[1] * np.random.uniform(scale_min,
                                                                  scale_max)
    target_size = math.sqrt(target_area)
    w = int(target_size * w)
    h = int(target_size * h)

    i = np.random.randint(0, img.shape[0] - h + 1)
    j = np.random.randint(0, img.shape[1] - w + 1)
    img = img[i:i + h, j:j + w, :]

    if interpolation:
        resized = cv2.resize(img, (size, size), interpolation=interpolation)
    else:
        resized = cv2.resize(img, (size, size))
    return resized


#NOTE:(2019/08/08) distort color func is not implemented
def distort_color(img):
    """distort image color

    Args:
        img: image data

    Returns:
        distorted color image data
    """
    return img


def resize_short(img, target_size, interpolation=None):
    """resize image
    
    Args:
        img: image data
        target_size: resize short target size
        interpolation: interpolation mode

    Returns:
        resized image data
    """
    percent = float(target_size) / min(img.shape[0], img.shape[1])
    resized_width = int(round(img.shape[1] * percent))
    resized_height = int(round(img.shape[0] * percent))
    if interpolation:
        resized = cv2.resize(
            img, (resized_width, resized_height), interpolation=interpolation)
    else:
        resized = cv2.resize(img, (resized_width, resized_height))
    return resized


def crop_image(img, target_size, center):
    """crop image 
    
    Args:
        img: images data
        target_size: crop target size
        center: crop mode
    
    Returns:
        img: cropped image data
    """
    height, width = img.shape[:2]
    size = target_size
    if center == True:
        w_start = (width - size) // 2
        h_start = (height - size) // 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img[h_start:h_end, w_start:w_end, :]
    return img


def create_mixup_reader(settings, rd):
    """
    """

    class context:
        tmp_mix = []
        tmp_l1 = []
        tmp_l2 = []
        tmp_lam = []

    alpha = settings.mixup_alpha

    def fetch_data():
        for item in rd():
            yield item

    def mixup_data():
        for data_list in fetch_data():
            if alpha > 0.:
                lam = np.random.beta(alpha, alpha)
            else:
                lam = 1.
            l1 = np.array(data_list)
            l2 = np.random.permutation(l1)
            mixed_l = [
                l1[i][0] * lam + (1 - lam) * l2[i][0] for i in range(len(l1))
            ]
            yield (mixed_l, l1, l2, lam)

    def mixup_reader():
        for context.tmp_mix, context.tmp_l1, context.tmp_l2, context.tmp_lam in mixup_data(
        ):
            for i in range(len(context.tmp_mix)):
                mixed_l = context.tmp_mix[i]
                l1 = context.tmp_l1[i]
                l2 = context.tmp_l2[i]
                lam = context.tmp_lam
                yield (mixed_l, int(l1[1]), int(l2[1]), float(lam))

    return mixup_reader


def process_image(sample, settings, mode, color_jitter, rotate):
    """ process_image """

    mean = settings.image_mean
    std = settings.image_std
    crop_size = settings.crop_size

    img_path = sample[0]
    img = cv2.imread(img_path)

    if mode == 'train':
        if rotate:
            img = rotate_image(img)
        if crop_size > 0:
            img = random_crop(
                img, crop_size, settings, interpolation=settings.interpolation)
        if color_jitter:
            img = distort_color(img)
        if np.random.randint(0, 2) == 1:
            img = img[:, ::-1, :]
    else:
        if crop_size > 0:
            target_size = settings.resize_short_size
            img = resize_short(
                img, target_size, interpolation=settings.interpolation)
            img = crop_image(img, target_size=crop_size, center=True)

    img = img[:, :, ::-1]

    if 'use_aa' in settings and settings.use_aa and mode == 'train':
        img = np.ascontiguousarray(img)
        img = Image.fromarray(img)
        img = policy(img)
        img = np.asarray(img)

    img = img.astype('float32').transpose((2, 0, 1)) / 255
    img_mean = np.array(mean).reshape((3, 1, 1))
    img_std = np.array(std).reshape((3, 1, 1))
    img -= img_mean
    img /= img_std

    if mode == 'train' or mode == 'val':
242
        return (img, [sample[1]])
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
    elif mode == 'test':
        return (img, )


def process_batch_data(input_data, settings, mode, color_jitter, rotate):
    batch_data = []
    for sample in input_data:
        if os.path.isfile(sample[0]):
            batch_data.append(
                process_image(sample, settings, mode, color_jitter, rotate))
        else:
            print("File not exist : %s" % sample[0])
    return batch_data


class ImageNetReader:
C
chajchaj 已提交
259
    def __init__(self, seed=None, place_num=1):
260
        self.shuffle_seed = seed
C
chajchaj 已提交
261
        self.place_num = place_num
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    def set_shuffle_seed(self, seed):
        assert isinstance(seed, int), "shuffle seed must be int"
        self.shuffle_seed = seed

    def _reader_creator(self,
                        settings,
                        file_list,
                        mode,
                        shuffle=False,
                        color_jitter=False,
                        rotate=False,
                        data_dir=None):
        num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
        if mode == 'test':
            batch_size = 1
        else:
C
chajchaj 已提交
279
            batch_size = settings.batch_size / self.place_num
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

        def reader():
            def read_file_list():
                with open(file_list) as flist:
                    full_lines = [line.strip() for line in flist]
                    if mode != "test" and len(full_lines) < settings.batch_size:
                        print(
                            "Warning: The number of the whole data ({}) is smaller than the batch_size ({}), and drop_last is turnning on, so nothing  will feed in program, Terminated now. Please reset batch_size to a smaller number or feed more data!"
                            .format(len(full_lines), settings.batch_size))
                        os._exit(1)
                    if num_trainers > 1 and mode == "train":
                        assert self.shuffle_seed is not None, "multiprocess train, shuffle seed must be set!"
                        np.random.RandomState(self.shuffle_seed).shuffle(
                            full_lines)
                    elif shuffle:
                        assert self.shuffle_seed is not None, "multiprocess train, shuffle seed must be set!"
                        np.random.RandomState(self.shuffle_seed).shuffle(
                            full_lines)

                batch_data = []
                for line in full_lines:
                    img_path, label = line.split()
                    img_path = os.path.join(data_dir, img_path)
                    batch_data.append([img_path, int(label)])
                    if len(batch_data) == batch_size:
                        if mode == 'train' or mode == 'val' or mode == 'test':
                            yield batch_data

                        batch_data = []

            return read_file_list

        data_reader = reader()
        if mode == 'train' and num_trainers > 1:
            assert self.shuffle_seed is not None, \
                "If num_trainers > 1, the shuffle_seed must be set, because " \
                "the order of batch data generated by reader " \
                "must be the same in the respective processes."
            data_reader = paddle.fluid.contrib.reader.distributed_batch_reader(
                data_reader)

        mapper = functools.partial(
            process_batch_data,
            settings=settings,
            mode=mode,
            color_jitter=color_jitter,
            rotate=rotate)

        ret = fluid.io.xmap_readers(
            mapper,
            data_reader,
            settings.reader_thread,
            settings.reader_buf_size,
            order=False)

        return ret

    def train(self, settings):
        """Create a reader for trainning

        Args:
            settings: arguments

        Returns:
            train reader
        """
        file_list = os.path.join(settings.data_dir, 'train_list.txt')
        assert os.path.isfile(
            file_list), "{} doesn't exist, please check data list path".format(
                file_list)

        if 'use_aa' in settings and settings.use_aa:
            global policy
            policy = ImageNetPolicy()

        reader = self._reader_creator(
            settings,
            file_list,
            'train',
            shuffle=True,
            color_jitter=False,
            rotate=False,
            data_dir=settings.data_dir)

        if settings.use_mixup == True:
            reader = create_mixup_reader(settings, reader)
            reader = fluid.io.batch(
                reader,
C
chajchaj 已提交
368
                batch_size=int(settings.batch_size / self.place_num),
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
                drop_last=True)
        return reader

    def val(self, settings):
        """Create a reader for eval

        Args:
            settings: arguments

        Returns:
            eval reader
        """
        file_list = os.path.join(settings.data_dir, 'val_list.txt')

        assert os.path.isfile(
            file_list), "{} doesn't exist, please check data list path".format(
                file_list)

        return self._reader_creator(
            settings,
            file_list,
            'val',
            shuffle=False,
            data_dir=settings.data_dir)

    def test(self, settings):
        """Create a reader for testing

        Args:
            settings: arguments

        Returns:
            test reader
        """
        file_list = os.path.join(settings.data_dir, 'val_list.txt')

        assert os.path.isfile(
            file_list), "{} doesn't exist, please check data list path".format(
                file_list)
        return self._reader_creator(
            settings,
            file_list,
            'test',
            shuffle=False,
            data_dir=settings.data_dir)