utility.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""
Contains common utility functions.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import paddle.fluid as fluid
import distutils.util
import numpy as np
import six
import argparse
import functools
import collections
import datetime
from collections import deque
from paddle.fluid import core
from collections import deque
from config import *


def print_arguments(args):
    """Print argparse's arguments.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        parser.add_argument("name", default="Jonh", type=str, help="User name.")
        args = parser.parse_args()
        print_arguments(args)

    :param args: Input argparse.Namespace for printing.
    :type args: argparse.Namespace
    """
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
    type = distutils.util.strtobool if type == bool else type
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)


class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size):
        self.deque = deque(maxlen=window_size)

    def add_value(self, value):
        self.deque.append(value)

    def get_median_value(self):
        return np.median(self.deque)


def now_time():
    return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')


class TrainingStats(object):
    def __init__(self, window_size, stats_keys):
        self.smoothed_losses_and_metrics = {
            key: SmoothedValue(window_size)
            for key in stats_keys
        }

    def update(self, stats):
        for k, v in self.smoothed_losses_and_metrics.items():
            v.add_value(stats[k])

    def get(self, extras=None):
        stats = collections.OrderedDict()
        if extras:
            for k, v in extras.items():
                stats[k] = v
        for k, v in self.smoothed_losses_and_metrics.items():
            stats[k] = round(v.get_median_value(), 3)

        return stats

    def log(self, extras=None):
        d = self.get(extras)
        strs = ', '.join(str(dict({x: y})).strip('{}') for x, y in d.items())
        return strs


def parse_args():
    """return all args
    """
    parser = argparse.ArgumentParser(description=__doc__)
    add_arg = functools.partial(add_arguments, argparser=parser)
    # yapf: disable
    # ENV
    add_arg('use_gpu',          bool,  True,      "Whether use GPU.")
    add_arg('model_save_dir',   str,    'output',     "The path to save model.")
    add_arg('pretrained_model', str,    'ResNet50_cos_pretrained', "The init model path.")
    add_arg('dataset',          str,   'icdar2015',  "icdar2015, icdar2017.")
    add_arg('class_num',        int,   2,          "Class number.")
    add_arg('data_dir',         str,   'dataset/icdar2015',        "The data root path.")
    add_arg('use_profile',         bool,   False,       "Whether use profiler.")
    add_arg('padding_minibatch',bool,   False,
        "If False, only resize image and not pad, image shape is different between"
        " GPUs in one mini-batch. If True, image shape is the same in one mini-batch.")
    #SOLVER
    add_arg('learning_rate',    float,  0.02,     "Learning rate.")
    add_arg('max_iter',         int,    17500,   "Iter number.")
    add_arg('log_window',       int,    20,        "Log smooth window, set 1 for debug, set 20 for train.")
    # RCNN
    # RPN
    add_arg('anchor_sizes',     int,    [128, 256, 512],  "The size of anchors.")
    add_arg('aspect_ratios',    float,  [0.2, 0.5,1.0],    "The ratio of anchors.")
    add_arg('anchor_angle',    float,  [-30.0, 0.0, 30.0, 60.0, 90.0, 120.0],    "The angles of anchors.")
    add_arg('variance',         float,  [1.0, 1.0, 1.0, 1.0, 1.0],    "The variance of anchors.")
    add_arg('rpn_stride',       float,  [16.,16.],    "Stride of the feature map that RPN is attached.")
    add_arg('rpn_nms_thresh',    float,   0.7,          "NMS threshold used on RPN proposals")
    # TRAIN VAL INFER
    add_arg('im_per_batch',       int,   1,        "Minibatch size.")
    add_arg('pixel_means',     float,   [0.485, 0.456, 0.406], "pixel mean")
    add_arg('nms_thresh',    float, 0.3,    "NMS threshold.")
    add_arg('score_thresh',    float, 0.01,    "score threshold for NMS.")
157
    add_arg('snapshot_iter',  int,    1000,    "save model every snapshot iter.")
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    # SINGLE EVAL AND DRAW
    add_arg('draw_threshold',  float, 0.8,    "Confidence threshold to draw bbox.")
    add_arg('image_path',       str,   'ICDAR2015/tmp/',  "The image path used to inference and visualize.")
    # yapf: enable
    args = parser.parse_args()
    file_name = sys.argv[0]
    if 'train' in file_name or 'profile' in file_name:
        merge_cfg_from_args(args, 'train')
    else:
        merge_cfg_from_args(args, 'val')
    return args


def check_gpu(use_gpu):
    """
     Log error and exit when set use_gpu=true in paddlepaddle
     cpu version.
     """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
        if use_gpu and not fluid.is_compiled_with_cuda():
            logger.error(err)
            sys.exit(1)
    except Exception as e:
        pass