encoder.py 33.3 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.utils import weight_norm

__all__ = [
    'BoWEncoder', 'CNNEncoder', 'GRUEncoder', 'LSTMEncoder', 'RNNEncoder',
    'TCNEncoder'
]


class BoWEncoder(nn.Layer):
    """
    A `BoWEncoder` takes as input a sequence of vectors and returns a
    single vector, which simply sums the embeddings of a sequence across the time dimension. 
    The input to this module is of shape `(batch_size, num_tokens, emb_dim)`, 
    and the output is of shape `(batch_size, emb_dim)`.

    Args:
        # TODO: unify the docstring style with PaddlePaddle.
        emb_dim(obj:`int`, required): It is the input dimension to the encoder.
    """

    def __init__(self, emb_dim):
        super().__init__()
        self._emb_dim = emb_dim

    def get_input_dim(self):
        """
        Returns the dimension of the vector input for each element in the sequence input
        to a `BoWEncoder`. This is not the shape of the input tensor, but the
        last element of that shape.
        """
        return self._emb_dim

    def get_output_dim(self):
        """
        Returns the dimension of the final vector output by this `BoWEncoder`.  This is not
        the shape of the returned tensor, but the last element of that shape.
        """
        return self._emb_dim

    def forward(self, inputs, mask=None):
        """
        It simply sums the embeddings of a sequence across the time dimension.

        Args:
            inputs (obj: `paddle.Tensor`): Shape as `(batch_size, num_tokens, emb_dim)`
            mask (obj: `paddle.Tensor`, optional, defaults to `None`): Shape same as `inputs`. Its each elements identify whether is padding token or not. 
                If True, not padding token. If False, padding token.

        Returns:
            summed (obj: `paddle.Tensor`): Shape of `(batch_size, emb_dim)`. The result vector of BagOfEmbedding.

        """
        if mask is not None:
            inputs = inputs * mask

        # Shape: (batch_size, embedding_dim)
        summed = inputs.sum(axis=1)
        return summed


class CNNEncoder(nn.Layer):
    """
    A `CNNEncoder` takes as input a sequence of vectors and returns a
    single vector, a combination of multiple convolution layers and max pooling layers.
    The input to this module is of shape `(batch_size, num_tokens, emb_dim)`, 
    and the output is of shape `(batch_size, ouput_dim)` or `(batch_size, len(ngram_filter_sizes) * num_filter)`.

    The CNN has one convolution layer for each ngram filter size. Each convolution operation gives
    out a vector of size num_filter. The number of times a convolution layer will be used
    is `num_tokens - ngram_size + 1`. The corresponding maxpooling layer aggregates all these
    outputs from the convolution layer and outputs the max.

    This operation is repeated for every ngram size passed, and consequently the dimensionality of
    the output after maxpooling is `len(ngram_filter_sizes) * num_filter`.  This then gets
    (optionally) projected down to a lower dimensional output, specified by `output_dim`.

    We then use a fully connected layer to project in back to the desired output_dim.  For more
    details, refer to "A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural
    Networks for Sentence Classification", Zhang and Wallace 2016, particularly Figure 1.
    ref: https://arxiv.org/abs/1510.03820

    Args:
        emb_dim(object:`int`, required):
            This is the input dimension to the encoder.
        num_filter(object:`int`, required):
            This is the output dim for each convolutional layer, which is the number of "filters"
            learned by that layer.
        ngram_filter_sizes(object: `Tuple[int]`, optional, default to `(2, 3, 4, 5)`):
            This specifies both the number of convolutional layers we will create and their sizes.  The
            default of `(2, 3, 4, 5)` will have four convolutional layers, corresponding to encoding
            ngrams of size 2 to 5 with some number of filters.
        conv_layer_activation(object: `str`, optional, default to `tanh`):
            Activation to use after the convolution layers.
        output_dim(object: `int`, optional, default to `None`):
            After doing convolutions and pooling, we'll project the collected features into a vector of
            this size.  If this value is `None`, we will just return the result of the max pooling,
            giving an output of shape `len(ngram_filter_sizes) * num_filter`.

    """

    def __init__(self,
                 emb_dim,
                 num_filter,
                 ngram_filter_sizes=(2, 3, 4, 5),
                 conv_layer_activation=nn.Tanh(),
                 output_dim=None,
                 **kwargs):
        super().__init__()
        self._emb_dim = emb_dim
        self._num_filter = num_filter
        self._ngram_filter_sizes = ngram_filter_sizes
        self._activation = conv_layer_activation
        self._output_dim = output_dim

132
        self.convs = paddle.nn.LayerList([
Z
Zeyu Chen 已提交
133 134 135 136 137
            nn.Conv2D(
                in_channels=1,
                out_channels=self._num_filter,
                kernel_size=(i, self._emb_dim),
                **kwargs) for i in self._ngram_filter_sizes
138
        ])
Z
Zeyu Chen 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

        maxpool_output_dim = self._num_filter * len(self._ngram_filter_sizes)
        if self._output_dim:
            self.projection_layer = nn.Linear(maxpool_output_dim,
                                              self._output_dim)
        else:
            self.projection_layer = None
            self._output_dim = maxpool_output_dim

    def get_input_dim(self):
        """
        Returns the dimension of the vector input for each element in the sequence input
        to a `CNNEncoder`. This is not the shape of the input tensor, but the
        last element of that shape.
        """
        return self._emb_dim

    def get_output_dim(self):
        """
        Returns the dimension of the final vector output by this `CNNEncoder`.  This is not
        the shape of the returned tensor, but the last element of that shape.
        """
        return self._output_dim

    def forward(self, inputs, mask=None):
        """
        The combination of multiple convolution layers and max pooling layers.

        Args:
            inputs (obj: `paddle.Tensor`, required): Shape as `(batch_size, num_tokens, emb_dim)`
            mask (obj: `paddle.Tensor`, optional, defaults to `None`): Shape same as `inputs`. 
                Its each elements identify whether is padding token or not. 
                If True, not padding token. If False, padding token.

        Returns:
            result (obj: `paddle.Tensor`): If output_dim is None, the result shape 
                is of `(batch_size, output_dim)`; if not, the result shape 
                is of `(batch_size, len(ngram_filter_sizes) * num_filter)`.

        """
        if mask is not None:
            inputs = inputs * mask

        # Shape: (batch_size, 1, num_tokens, emb_dim) = (N, C, H, W)
        inputs = inputs.unsqueeze(1)

        # If output_dim is None, result shape of (batch_size, len(ngram_filter_sizes) * num_filter));
        # else, result shape of (batch_size, output_dim).
        convs_out = [
            self._activation(conv(inputs)).squeeze(3) for conv in self.convs
        ]
        maxpool_out = [
            F.max_pool1d(
                t, kernel_size=t.shape[2]).squeeze(2) for t in convs_out
        ]
        result = paddle.concat(maxpool_out, axis=1)

        if self.projection_layer is not None:
            result = self.projection_layer(result)
        return result


class GRUEncoder(nn.Layer):
    """
    A GRUEncoder takes as input a sequence of vectors and returns a
    single vector, which is a combination of multiple GRU layers.
    The input to this module is of shape `(batch_size, num_tokens, input_size)`, 
    The output is of shape `(batch_size, hidden_size*2)` if GRU is bidirectional;
    If not, output is of shape `(batch_size, hidden_size)`.

    Paddle's GRU have two outputs: the hidden state for every time step at last layer, 
    and the hidden state at the last time step for every layer.
    If `pooling_type` is None, we perform the pooling on the hidden state of every time 
    step at last layer to create a single vector. If not None, we use the hidden state 
    of the last time step at last layer as a single output (shape of `(batch_size, hidden_size)`); 
    And if direction is bidirectional, the we concat the hidden state of the last forward 
    gru and backward gru layer to create a single vector (shape of `(batch_size, hidden_size*2)`).

    Args:
        input_size (obj:`int`, required): The number of expected features in the input (the last dimension).
        hidden_size (obj:`int`, required): The number of features in the hidden state.
        num_layers (obj:`int`, optional, defaults to 1): Number of recurrent layers. 
            E.g., setting num_layers=2 would mean stacking two GRUs together to form a stacked GRU, 
            with the second GRU taking in outputs of the first GRU and computing the final results.
        direction (obj:`str`, optional, defaults to obj:`forwrd`): The direction of the network. 
224
            It can be "forward" and "bidirectional".
Z
Zeyu Chen 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
            When "bidirectional", the way to merge outputs of forward and backward is concatenating.
        dropout (obj:`float`, optional, defaults to 0.0): If non-zero, introduces a Dropout layer 
            on the outputs of each GRU layer except the last layer, with dropout probability equal to dropout.
        pooling_type (obj: `str`, optional, defaults to obj:`None`): If `pooling_type` is None, 
            then the GRUEncoder will return the hidden state of the last time step at last layer as a single vector.
            If pooling_type is not None, it must be one of `sum`, `max` and `mean`. Then it will be pooled on 
            the GRU output (the hidden state of every time step at last layer) to create a single vector.

    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 dropout=0.0,
                 pooling_type=None,
                 **kwargs):
        super().__init__()
        self._input_size = input_size
        self._hidden_size = hidden_size
        self._direction = direction
        self._pooling_type = pooling_type

        self.gru_layer = nn.GRU(input_size=input_size,
                                hidden_size=hidden_size,
                                num_layers=num_layers,
                                direction=direction,
                                dropout=dropout,
                                **kwargs)

    def get_input_dim(self):
        """
        Returns the dimension of the vector input for each element in the sequence input
        to a `GRUEncoder`. This is not the shape of the input tensor, but the
        last element of that shape.
        """
        return self._input_size

    def get_output_dim(self):
        """
        Returns the dimension of the final vector output by this `GRUEncoder`.  This is not
        the shape of the returned tensor, but the last element of that shape.
        """
        if self._direction == "bidirectional":
            return self._hidden_size * 2
        else:
            return self._hidden_size

    def forward(self, inputs, sequence_length):
        """
        GRUEncoder takes the a sequence of vectors and and returns a
        single vector, which is a combination of multiple GRU layers.
        The input to this module is of shape `(batch_size, num_tokens, input_size)`, 
        The output is of shape `(batch_size, hidden_size*2)` if GRU is bidirectional;
        If not, output is of shape `(batch_size, hidden_size)`.

        Args:
            inputs (obj:`Paddle.Tensor`, required): Shape as `(batch_size, num_tokens, input_size)`.
            sequence_length (obj:`Paddle.Tensor`, required): Shape as `(batch_size)`.

        Returns:
            last_hidden (obj:`Paddle.Tensor`, required): Shape as `(batch_size, hidden_size)`.
                The hidden state at the last time step for every layer.

        """
        encoded_text, last_hidden = self.gru_layer(
            inputs, sequence_length=sequence_length)
        if not self._pooling_type:
            # We exploit the `last_hidden` (the hidden state at the last time step for every layer)
            # to create a single vector.
            # If gru is not bidirectional, then output is the hidden state of the last time step 
            # at last layer. Output is shape of `(batch_size, hidden_size)`.
            # If gru is bidirectional, then output is concatenation of the forward and backward hidden state 
            # of the last time step at last layer. Output is shape of `(batch_size, hidden_size*2)`.
            if self._direction != 'bidirectional':
                output = last_hidden[-1, :, :]
            else:
                output = paddle.concat(
                    (last_hidden[-2, :, :], last_hidden[-1, :, :]), axis=1)
        else:
            # We exploit the `encoded_text` (the hidden state at the every time step for last layer)
            # to create a single vector. We perform pooling on the encoded text.
            # If gru is not bidirectional, output is shape of `(batch_size, hidden_size)`.
            # If gru is bidirectional, then output is shape of `(batch_size, hidden_size*2)`.
            if self._pooling_type == 'sum':
                output = paddle.sum(encoded_text, axis=1)
            elif self._pooling_type == 'max':
                output = paddle.max(encoded_text, axis=1)
            elif self._pooling_type == 'mean':
                output = paddle.mean(encoded_text, axis=1)
            else:
                raise RuntimeError(
                    "Unexpected pooling type %s ."
                    "Pooling type must be one of sum, max and mean." %
                    self._pooling_type)
        return output


class LSTMEncoder(nn.Layer):
    """
    A LSTMEncoder takes as input a sequence of vectors and returns a
    single vector, which is a combination of multiple LSTM layers.
    The input to this module is of shape `(batch_size, num_tokens, input_size)`, 
    The output is of shape `(batch_size, hidden_size*2)` if LSTM is bidirectional;
    If not, output is of shape `(batch_size, hidden_size)`.

    Paddle's LSTM have two outputs: the hidden state for every time step at last layer, 
    and the hidden state and cell at the last time step for every layer.
    If `pooling_type` is None, we perform the pooling on the hidden state of every time 
    step at last layer to create a single vector. If not None, we use the hidden state 
    of the last time step at last layer as a single output (shape of `(batch_size, hidden_size)`); 
    And if direction is bidirectional, the we concat the hidden state of the last forward 
    lstm and backward lstm layer to create a single vector (shape of `(batch_size, hidden_size*2)`).

    Args:
        input_size (obj:`int`, required): The number of expected features in the input (the last dimension).
        hidden_size (obj:`int`, required): The number of features in the hidden state.
        num_layers (obj:`int`, optional, defaults to 1): Number of recurrent layers. 
            E.g., setting num_layers=2 would mean stacking two LSTMs together to form a stacked LSTM, 
            with the second LSTM taking in outputs of the first LSTM and computing the final results.
        direction (obj:`str`, optional, defaults to obj:`forwrd`): The direction of the network. 
347
            It can be "forward" and "bidirectional".
Z
Zeyu Chen 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
            When "bidirectional", the way to merge outputs of forward and backward is concatenating.
        dropout (obj:`float`, optional, defaults to 0.0): If non-zero, introduces a Dropout layer 
            on the outputs of each LSTM layer except the last layer, with dropout probability equal to dropout.
        pooling_type (obj: `str`, optional, defaults to obj:`None`): If `pooling_type` is None, 
            then the LSTMEncoder will return the hidden state of the last time step at last layer as a single vector.
            If pooling_type is not None, it must be one of `sum`, `max` and `mean`. Then it will be pooled on 
            the LSTM output (the hidden state of every time step at last layer) to create a single vector.

    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 dropout=0.0,
                 pooling_type=None,
                 **kwargs):
        super().__init__()
        self._input_size = input_size
        self._hidden_size = hidden_size
        self._direction = direction
        self._pooling_type = pooling_type

        self.lstm_layer = nn.LSTM(
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=num_layers,
            direction=direction,
            dropout=dropout,
            **kwargs)

    def get_input_dim(self):
        """
        Returns the dimension of the vector input for each element in the sequence input
        to a `LSTMEncoder`. This is not the shape of the input tensor, but the
        last element of that shape.
        """
        return self._input_size

    def get_output_dim(self):
        """
        Returns the dimension of the final vector output by this `LSTMEncoder`.  This is not
        the shape of the returned tensor, but the last element of that shape.
        """
        if self._direction == "bidirectional":
            return self._hidden_size * 2
        else:
            return self._hidden_size

    def forward(self, inputs, sequence_length):
        """
        LSTMEncoder takes the a sequence of vectors and and returns a
        single vector, which is a combination of multiple LSTM layers.
        The input to this module is of shape `(batch_size, num_tokens, input_size)`, 
        The output is of shape `(batch_size, hidden_size*2)` if LSTM is bidirectional;
        If not, output is of shape `(batch_size, hidden_size)`.

        Args:
            inputs (obj:`Paddle.Tensor`, required): Shape as `(batch_size, num_tokens, input_size)`.
            sequence_length (obj:`Paddle.Tensor`, required): Shape as `(batch_size)`.

        Returns:
            last_hidden (obj:`Paddle.Tensor`, required): Shape as `(batch_size, hidden_size)`.
                The hidden state at the last time step for every layer.

        """
        encoded_text, (last_hidden, last_cell) = self.lstm_layer(
            inputs, sequence_length=sequence_length)
        if not self._pooling_type:
            # We exploit the `last_hidden` (the hidden state at the last time step for every layer)
            # to create a single vector.
            # If lstm is not bidirectional, then output is the hidden state of the last time step 
            # at last layer. Output is shape of `(batch_size, hidden_size)`.
            # If lstm is bidirectional, then output is concatenation of the forward and backward hidden state 
            # of the last time step at last layer. Output is shape of `(batch_size, hidden_size*2)`.
            if self._direction != 'bidirectional':
                output = last_hidden[-1, :, :]
            else:
                output = paddle.concat(
                    (last_hidden[-2, :, :], last_hidden[-1, :, :]), axis=1)
        else:
            # We exploit the `encoded_text` (the hidden state at the every time step for last layer)
            # to create a single vector. We perform pooling on the encoded text.
            # If lstm is not bidirectional, output is shape of `(batch_size, hidden_size)`.
            # If lstm is bidirectional, then output is shape of `(batch_size, hidden_size*2)`.
            if self._pooling_type == 'sum':
                output = paddle.sum(encoded_text, axis=1)
            elif self._pooling_type == 'max':
                output = paddle.max(encoded_text, axis=1)
            elif self._pooling_type == 'mean':
                output = paddle.mean(encoded_text, axis=1)
            else:
                raise RuntimeError(
                    "Unexpected pooling type %s ."
                    "Pooling type must be one of sum, max and mean." %
                    self._pooling_type)
        return output


class RNNEncoder(nn.Layer):
    """
    A RNNEncoder takes as input a sequence of vectors and returns a
    single vector, which is a combination of multiple RNN layers.
    The input to this module is of shape `(batch_size, num_tokens, input_size)`, 
    The output is of shape `(batch_size, hidden_size*2)` if RNN is bidirectional;
    If not, output is of shape `(batch_size, hidden_size)`.

    Paddle's RNN have two outputs: the hidden state for every time step at last layer, 
    and the hidden state at the last time step for every layer.
    If `pooling_type` is None, we perform the pooling on the hidden state of every time 
    step at last layer to create a single vector. If not None, we use the hidden state 
    of the last time step at last layer as a single output (shape of `(batch_size, hidden_size)`); 
    And if direction is bidirectional, the we concat the hidden state of the last forward 
    rnn and backward rnn layer to create a single vector (shape of `(batch_size, hidden_size*2)`).

    Args:
        input_size (obj:`int`, required): The number of expected features in the input (the last dimension).
        hidden_size (obj:`int`, required): The number of features in the hidden state.
        num_layers (obj:`int`, optional, defaults to 1): Number of recurrent layers. 
            E.g., setting num_layers=2 would mean stacking two RNNs together to form a stacked RNN, 
            with the second RNN taking in outputs of the first RNN and computing the final results.
        direction (obj:`str`, optional, defaults to obj:`forwrd`): The direction of the network. 
471
            It can be "forward" and "bidirectional".
Z
Zeyu Chen 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
            When "bidirectional", the way to merge outputs of forward and backward is concatenating.
        dropout (obj:`float`, optional, defaults to 0.0): If non-zero, introduces a Dropout layer 
            on the outputs of each RNN layer except the last layer, with dropout probability equal to dropout.
        pooling_type (obj: `str`, optional, defaults to obj:`None`): If `pooling_type` is None, 
            then the RNNEncoder will return the hidden state of the last time step at last layer as a single vector.
            If pooling_type is not None, it must be one of `sum`, `max` and `mean`. Then it will be pooled on 
            the RNN output (the hidden state of every time step at last layer) to create a single vector.

    """

    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 dropout=0.0,
                 pooling_type=None,
                 **kwargs):
        super().__init__()
        self._input_size = input_size
        self._hidden_size = hidden_size
        self._direction = direction
        self._pooling_type = pooling_type

        self.rnn_layer = nn.SimpleRNN(
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=num_layers,
            direction=direction,
            dropout=dropout,
            **kwargs)

    def get_input_dim(self):
        """
        Returns the dimension of the vector input for each element in the sequence input
        to a `RNNEncoder`. This is not the shape of the input tensor, but the
        last element of that shape.
        """
        return self._input_size

    def get_output_dim(self):
        """
        Returns the dimension of the final vector output by this `RNNEncoder`.  This is not
        the shape of the returned tensor, but the last element of that shape.
        """
        if self._direction == "bidirectional":
            return self._hidden_size * 2
        else:
            return self._hidden_size

    def forward(self, inputs, sequence_length):
        """
        RNNEncoder takes the a sequence of vectors and and returns a
        single vector, which is a combination of multiple RNN layers.
        The input to this module is of shape `(batch_size, num_tokens, input_size)`, 
        The output is of shape `(batch_size, hidden_size*2)` if RNN is bidirectional;
        If not, output is of shape `(batch_size, hidden_size)`.

        Args:
            inputs (obj:`Paddle.Tensor`, required): Shape as `(batch_size, num_tokens, input_size)`.
            sequence_length (obj:`Paddle.Tensor`, required): Shape as `(batch_size)`.

        Returns:
            last_hidden (obj:`Paddle.Tensor`, required): Shape as `(batch_size, hidden_size)`.
                The hidden state at the last time step for every layer.

        """
        encoded_text, last_hidden = self.rnn_layer(
            inputs, sequence_length=sequence_length)
        if not self._pooling_type:
            # We exploit the `last_hidden` (the hidden state at the last time step for every layer)
            # to create a single vector.
            # If rnn is not bidirectional, then output is the hidden state of the last time step 
            # at last layer. Output is shape of `(batch_size, hidden_size)`.
            # If rnn is bidirectional, then output is concatenation of the forward and backward hidden state 
            # of the last time step at last layer. Output is shape of `(batch_size, hidden_size*2)`.
            if self._direction != 'bidirectional':
                output = last_hidden[-1, :, :]
            else:
                output = paddle.concat(
                    (last_hidden[-2, :, :], last_hidden[-1, :, :]), axis=1)
        else:
            # We exploit the `encoded_text` (the hidden state at the every time step for last layer)
            # to create a single vector. We perform pooling on the encoded text.
            # If rnn is not bidirectional, output is shape of `(batch_size, hidden_size)`.
            # If rnn is bidirectional, then output is shape of `(batch_size, hidden_size*2)`.
            if self._pooling_type == 'sum':
                output = paddle.sum(encoded_text, axis=1)
            elif self._pooling_type == 'max':
                output = paddle.max(encoded_text, axis=1)
            elif self._pooling_type == 'mean':
                output = paddle.mean(encoded_text, axis=1)
            else:
                raise RuntimeError(
                    "Unexpected pooling type %s ."
                    "Pooling type must be one of sum, max and mean." %
                    self._pooling_type)
        return output


class Chomp1d(nn.Layer):
    """
    Remove the elements on the right.

    Args:
        chomp_size ([int]): The number of elements removed.
    """

    def __init__(self, chomp_size):
        super(Chomp1d, self).__init__()
        self.chomp_size = chomp_size

    def forward(self, x):
        return x[:, :, :-self.chomp_size]


class TemporalBlock(nn.Layer):
    """
    The TCN block, consists of dilated causal conv, relu and residual block. 
    See the Figure 1(b) in https://arxiv.org/pdf/1803.01271.pdf for more details.

    Args:
        n_inputs ([int]): The number of channels in the input tensor.
        n_outputs ([int]): The number of filters.
        kernel_size ([int]): The filter size.
        stride ([int]): The stride size.
        dilation ([int]): The dilation size.
        padding ([int]): The size of zeros to be padded.
        dropout (float, optional): Probability of dropout the units. Defaults to 0.2.
    """

    def __init__(self,
                 n_inputs,
                 n_outputs,
                 kernel_size,
                 stride,
                 dilation,
                 padding,
                 dropout=0.2):

        super(TemporalBlock, self).__init__()
        self.conv1 = weight_norm(
            nn.Conv1D(
                n_inputs,
                n_outputs,
                kernel_size,
                stride=stride,
                padding=padding,
                dilation=dilation))
        # Chomp1d is used to make sure the network is causal.
        # We pad by (k-1)*d on the two sides of the input for convolution, 
        # and then use Chomp1d to remove the (k-1)*d output elements on the right.
        self.chomp1 = Chomp1d(padding)
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(dropout)

        self.conv2 = weight_norm(
            nn.Conv1D(
                n_outputs,
                n_outputs,
                kernel_size,
                stride=stride,
                padding=padding,
                dilation=dilation))
        self.chomp2 = Chomp1d(padding)
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(dropout)

        self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1,
                                 self.dropout1, self.conv2, self.chomp2,
                                 self.relu2, self.dropout2)
        self.downsample = nn.Conv1D(n_inputs, n_outputs,
                                    1) if n_inputs != n_outputs else None
        self.relu = nn.ReLU()
        self.init_weights()

    def init_weights(self):
        self.conv1.weight.set_value(
            paddle.tensor.normal(0.0, 0.01, self.conv1.weight.shape))
        self.conv2.weight.set_value(
            paddle.tensor.normal(0.0, 0.01, self.conv2.weight.shape))
        if self.downsample is not None:
            self.downsample.weight.set_value(
                paddle.tensor.normal(0.0, 0.01, self.downsample.weight.shape))

    def forward(self, x):
        out = self.net(x)
        res = x if self.downsample is None else self.downsample(x)
        return self.relu(out + res)


class TCNEncoder(nn.Layer):
    """
    A `TCNEncoder` takes as input a sequence of vectors and returns a
    single vector, which is the last one time step in the feature map. 
    The input to this module is of shape `(batch_size, num_tokens, input_size)`, 
    and the output is of shape `(batch_size, num_channels[-1])` with a receptive 
    filed:
    
    .. math::
    
        receptive filed = $2 * \sum_{i=0}^{len(num\_channels)-1}2^i(kernel\_size-1)$.
    
    Temporal Convolutional Networks is a simple convolutional architecture. It outperforms canonical recurrent networks
    such as LSTMs in many tasks. See https://arxiv.org/pdf/1803.01271.pdf for more details.

    Args:
        input_size (obj:`int`, required): The number of expected features in the input (the last dimension).
        num_channels (obj:`list` or obj:`tuple`, required): The number of channels in different layer. 
        kernel_size (obj:`int`, optional): The kernel size. Defaults to 2.
        dropout (obj:`float`, optional): The dropout probability. Defaults to 0.2.
    """

    def __init__(self, input_size, num_channels, kernel_size=2, dropout=0.2):
        super(TCNEncoder, self).__init__()
        self._input_size = input_size
        self._output_dim = num_channels[-1]

        layers = nn.LayerList()
        num_levels = len(num_channels)
        for i in range(num_levels):
            dilation_size = 2**i
            in_channels = input_size if i == 0 else num_channels[i - 1]
            out_channels = num_channels[i]
            layers.append(
                TemporalBlock(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride=1,
                    dilation=dilation_size,
                    padding=(kernel_size - 1) * dilation_size,
                    dropout=dropout))

        self.network = nn.Sequential(*layers)

    def get_input_dim(self):
        """
        Returns the dimension of the vector input for each element in the sequence input
        to a `TCNEncoder`. This is not the shape of the input tensor, but the
        last element of that shape.
        """
        return self._input_size

    def get_output_dim(self):
        """
        Returns the dimension of the final vector output by this `TCNEncoder`.  This is not
        the shape of the returned tensor, but the last element of that shape.
        """
        return self._output_dim

    def forward(self, inputs):
        """
        TCNEncoder takes as input a sequence of vectors and returns a
        single vector, which is the last one time step in the feature map. 
        The input to this module is of shape `(batch_size, num_tokens, input_size)`, 
        and the output is of shape `(batch_size, num_channels[-1])` with a receptive 
        filed:
    
        .. math::
        
            receptive filed = $2 * \sum_{i=0}^{len(num\_channels)-1}2^i(kernel\_size-1)$.

        Args:
            inputs (obj:`Paddle.Tensor`, required): The input tensor with shape `[batch_size, num_tokens, input_size]`.

        Returns:
            output (obj:`Paddle.Tensor`): The output tensor with shape `[batch_size, num_channels[-1]]`.
        """
        inputs_t = inputs.transpose([0, 2, 1])
        output = self.network(inputs_t).transpose([2, 0, 1])[-1]
        return output