predict.py 4.3 KB
Newer Older
S
Steffy-zxf 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
import argparse

import paddle
import paddlenlp as ppnlp

from utils import load_vocab, generate_batch, preprocess_prediction_data

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--use_gpu", type=eval, default=False, help="Whether use GPU for training, input should be True or False")
parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number of a batch for training.")
parser.add_argument("--vocab_path", type=str, default="./data/term2id.dict", help="The path to vocabulary.")
S
Steffy-zxf 已提交
28
parser.add_argument('--network', type=str, default="lstm", help="Which network you would like to choose bow, cnn, lstm or gru ?")
S
Steffy-zxf 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
parser.add_argument("--params_path", type=str, default='./chekpoints/final.pdparams', help="The path of model parameter to be loaded.")
args = parser.parse_args()
# yapf: enable


def predict(model, data, label_map, collate_fn, batch_size=1, pad_token_id=0):
    """
    Predicts the data labels.

    Args:
        model (obj:`paddle.nn.Layer`): A model to classify texts.
        data (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object.
            A Example object contains `text`(word_ids) and `se_len`(sequence length).
        label_map(obj:`dict`): The label id (key) to label str (value) map.
        collate_fn(obj: `callable`): function to generate mini-batch data by merging
            the sample list.
        batch_size(obj:`int`, defaults to 1): The number of batch.
        pad_token_id(obj:`int`, optinal, defaults to 0) : The pad token index.

    Returns:
        results(obj:`dict`): All the predictions labels.
    """

    # Seperates data into some batches.
    batches = []
    one_batch = []
    for example in data:
        one_batch.append(example)
        if len(one_batch) == batch_size:
            batches.append(one_batch)
            one_batch = []
    if one_batch:
        # The last batch whose size is less than the config batch_size setting.
        batches.append(one_batch)

    results = []
    model.eval()
    for batch in batches:
        queries, titles, query_seq_lens, title_seq_lens = collate_fn(
            batch, pad_token_id=pad_token_id, return_label=False)
        queries = paddle.to_tensor(queries)
        titles = paddle.to_tensor(titles)
        query_seq_lens = paddle.to_tensor(query_seq_lens)
        title_seq_lens = paddle.to_tensor(title_seq_lens)
        probs = model(queries, titles, query_seq_lens, title_seq_lens)
        idx = paddle.argmax(probs, axis=1).numpy()
        idx = idx.tolist()
        labels = [label_map[i] for i in idx]
        results.extend(labels)
    return results


if __name__ == "__main__":
    paddle.set_device("gpu") if args.use_gpu else paddle.set_device("cpu")
    # Loads vocab.
    vocab = load_vocab(args.vocab_path)
    label_map = {0: 'dissimilar', 1: 'similar'}

    # Constructs the newtork.
    model = ppnlp.models.SimNet(
S
Steffy-zxf 已提交
89
        network=args.network, vocab_size=len(vocab), num_classes=len(label_map))
S
Steffy-zxf 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

    # Loads model parameters.
    state_dict = paddle.load(args.params_path)
    model.set_dict(state_dict)
    print("Loaded parameters from %s" % args.params_path)

    # Firstly pre-processing prediction data  and then do predict.
    data = [
        ['世界上什么东西最小', '世界上什么东西最小?'],
        ['光眼睛大就好看吗', '眼睛好看吗?'],
        ['小蝌蚪找妈妈怎么样', '小蝌蚪找妈妈是谁画的'],
    ]
    examples = preprocess_prediction_data(data, vocab)
    results = predict(
        model,
        examples,
        label_map=label_map,
        batch_size=args.batch_size,
        collate_fn=generate_batch)

    for idx, text in enumerate(data):
        print('Data: {} \t Label: {}'.format(text, results[idx]))