reader.py 14.7 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import sys
import os
import io
import itertools
from functools import partial

import numpy as np
from paddle.io import BatchSampler, DataLoader, Dataset
from paddlenlp.data import Pad


def create_infer_loader(args):
    dataset = TransformerDataset(
        fpattern=args.predict_file,
        src_vocab_fpath=args.src_vocab_fpath,
        trg_vocab_fpath=args.trg_vocab_fpath,
        token_delimiter=args.token_delimiter,
        start_mark=args.special_token[0],
        end_mark=args.special_token[1],
        unk_mark=args.special_token[2])
    args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \
        args.unk_idx = dataset.get_vocab_summary()
    trg_idx2word = TransformerDataset.load_dict(
        dict_path=args.trg_vocab_fpath, reverse=True)
    batch_sampler = TransformerBatchSampler(
        dataset=dataset,
        use_token_batch=False,
        batch_size=args.infer_batch_size,
        max_length=args.max_length)
    data_loader = DataLoader(
        dataset=dataset,
        batch_sampler=batch_sampler,
        collate_fn=partial(
            prepare_infer_input,
            bos_idx=args.bos_idx,
            eos_idx=args.eos_idx,
L
liu zhengxi 已提交
52
            pad_idx=args.bos_idx),
Z
Zeyu Chen 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
        num_workers=0,
        return_list=True)
    data_loaders = (data_loader, batch_sampler.__len__)
    return data_loaders, trg_idx2word


def create_data_loader(args, world_size=1, rank=0):
    data_loaders = [(None, None)] * 2
    data_files = [args.training_file, args.validation_file
                  ] if args.validation_file else [args.training_file]
    for i, data_file in enumerate(data_files):
        dataset = TransformerDataset(
            fpattern=data_file,
            src_vocab_fpath=args.src_vocab_fpath,
            trg_vocab_fpath=args.trg_vocab_fpath,
            token_delimiter=args.token_delimiter,
            start_mark=args.special_token[0],
            end_mark=args.special_token[1],
            unk_mark=args.special_token[2])
        args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \
            args.unk_idx = dataset.get_vocab_summary()
        batch_sampler = TransformerBatchSampler(
            dataset=dataset,
            batch_size=args.batch_size,
            pool_size=args.pool_size,
            sort_type=args.sort_type,
            shuffle=args.shuffle,
            shuffle_batch=args.shuffle_batch,
            use_token_batch=args.use_token_batch,
            max_length=args.max_length,
            distribute_mode=True if i == 0 else False,
            world_size=world_size,
            rank=rank)
        data_loader = DataLoader(
            dataset=dataset,
            batch_sampler=batch_sampler,
            collate_fn=partial(
                prepare_train_input,
                bos_idx=args.bos_idx,
                eos_idx=args.eos_idx,
                pad_idx=args.bos_idx),
            num_workers=0,
            return_list=True)
        data_loaders[i] = (data_loader, batch_sampler.__len__)
    return data_loaders


def prepare_train_input(insts, bos_idx, eos_idx, pad_idx):
    """
    Put all padded data needed by training into a list.
    """
    word_pad = Pad(pad_idx)
    src_word = word_pad([inst[0] + [eos_idx] for inst in insts])
    trg_word = word_pad([[bos_idx] + inst[1] for inst in insts])
    lbl_word = np.expand_dims(
        word_pad([inst[1] + [eos_idx] for inst in insts]), axis=2)

    data_inputs = [src_word, trg_word, lbl_word]

    return data_inputs


def prepare_infer_input(insts, bos_idx, eos_idx, pad_idx):
    """
    Put all padded data needed by beam search decoder into a list.
    """
    word_pad = Pad(pad_idx)
    src_word = word_pad([inst[0] + [eos_idx] for inst in insts])

    return [src_word, ]


class SortType(object):
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"


class Converter(object):
    def __init__(self, vocab, beg, end, unk, delimiter, add_beg, add_end):
        self._vocab = vocab
        self._beg = beg
        self._end = end
        self._unk = unk
        self._delimiter = delimiter
        self._add_beg = add_beg
        self._add_end = add_end

    def __call__(self, sentence):
        return ([self._beg] if self._add_beg else []) + [
            self._vocab.get(w, self._unk)
            for w in sentence.split(self._delimiter)
        ] + ([self._end] if self._add_end else [])


class ComposedConverter(object):
    def __init__(self, converters):
        self._converters = converters

    def __call__(self, fields):
        return [
            converter(field)
            for field, converter in zip(fields, self._converters)
        ]


class SentenceBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


class TokenBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self.batch) + 1) > self._batch_size:
            result = self.batch
            self.batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self.batch.append(info)


class SampleInfo(object):
    def __init__(self, i, lens):
        self.i = i
        # take bos and eos into account
        self.min_len = min(lens[0] + 1, lens[1] + 1)
        self.max_len = max(lens[0] + 1, lens[1] + 1)
        self.src_len = lens[0]
        self.trg_len = lens[1]


class MinMaxFilter(object):
    def __init__(self, max_len, min_len, underlying_creator):
        self._min_len = min_len
        self._max_len = max_len
        self._creator = underlying_creator

    def append(self, info):
        if info.max_len > self._max_len or info.min_len < self._min_len:
            return
        else:
            return self._creator.append(info)

    @property
    def batch(self):
        return self._creator.batch


class TransformerDataset(Dataset):
    def __init__(self,
                 src_vocab_fpath,
                 trg_vocab_fpath,
                 fpattern,
                 field_delimiter="\t",
                 token_delimiter=" ",
                 start_mark="<s>",
                 end_mark="<e>",
                 unk_mark="<unk>",
                 trg_fpattern=None):
        self._src_vocab = self.load_dict(src_vocab_fpath)
        self._trg_vocab = self.load_dict(trg_vocab_fpath)
        self._bos_idx = self._src_vocab[start_mark]
        self._eos_idx = self._src_vocab[end_mark]
        self._unk_idx = self._src_vocab[unk_mark]
        self._field_delimiter = field_delimiter
        self._token_delimiter = token_delimiter
        self.load_src_trg_ids(fpattern, trg_fpattern)

    def load_src_trg_ids(self, fpattern, trg_fpattern=None):
        src_converter = Converter(
            vocab=self._src_vocab,
            beg=self._bos_idx,
            end=self._eos_idx,
            unk=self._unk_idx,
            delimiter=self._token_delimiter,
            add_beg=False,
            add_end=False)

        trg_converter = Converter(
            vocab=self._trg_vocab,
            beg=self._bos_idx,
            end=self._eos_idx,
            unk=self._unk_idx,
            delimiter=self._token_delimiter,
            add_beg=False,
            add_end=False)

        converters = ComposedConverter([src_converter, trg_converter])

        self._src_seq_ids = []
        self._trg_seq_ids = []
        self._sample_infos = []

        slots = [self._src_seq_ids, self._trg_seq_ids]
        for i, line in enumerate(self._load_lines(fpattern, trg_fpattern)):
            lens = []
            for field, slot in zip(converters(line), slots):
                slot.append(field)
                lens.append(len(field))
            self._sample_infos.append(SampleInfo(i, lens))

    def _load_lines(self, fpattern, trg_fpattern=None):
        fpaths = glob.glob(fpattern)
        fpaths = sorted(fpaths)  # TODO: Add custum sort
        assert len(fpaths) > 0, "no matching file to the provided data path"

        (f_mode, f_encoding, endl) = ("r", "utf8", "\n")

        if trg_fpattern is None:
            for fpath in fpaths:
                with io.open(fpath, f_mode, encoding=f_encoding) as f:
                    for line in f:
                        fields = line.strip(endl).split(self._field_delimiter)
                        yield fields
        else:
            # separated source and target language data files
            # assume we can get aligned data by sort the two language files
            trg_fpaths = glob.glob(trg_fpattern)
            trg_fpaths = sorted(trg_fpaths)
            assert len(fpaths) == len(
                trg_fpaths
            ), "the number of source language data files must equal \
                with that of source language"

            for fpath, trg_fpath in zip(fpaths, trg_fpaths):
                with io.open(fpath, f_mode, encoding=f_encoding) as f:
                    with io.open(
                            trg_fpath, f_mode, encoding=f_encoding) as trg_f:
                        for line in zip(f, trg_f):
                            fields = [field.strip(endl) for field in line]
                            yield fields

    @staticmethod
    def load_dict(dict_path, reverse=False):
        word_dict = {}
        (f_mode, f_encoding, endl) = ("r", "utf8", "\n")
        with io.open(dict_path, f_mode, encoding=f_encoding) as fdict:
            for idx, line in enumerate(fdict):
                if reverse:
                    word_dict[idx] = line.strip(endl)
                else:
                    word_dict[line.strip(endl)] = idx
        return word_dict

    def get_vocab_summary(self):
        return len(self._src_vocab), len(
            self._trg_vocab), self._bos_idx, self._eos_idx, self._unk_idx

    def __getitem__(self, idx):
        return (self._src_seq_ids[idx], self._trg_seq_ids[idx]
                ) if self._trg_seq_ids else self._src_seq_ids[idx]

    def __len__(self):
        return len(self._sample_infos)


class TransformerBatchSampler(BatchSampler):
    def __init__(self,
                 dataset,
                 batch_size,
                 pool_size=10000,
                 sort_type=SortType.NONE,
                 min_length=0,
                 max_length=100,
                 shuffle=False,
                 shuffle_batch=False,
                 use_token_batch=False,
                 clip_last_batch=False,
                 distribute_mode=True,
                 seed=0,
                 world_size=1,
                 rank=0):
        for arg, value in locals().items():
            if arg != "self":
                setattr(self, "_" + arg, value)
        self._random = np.random
        self._random.seed(seed)
        # for multi-devices
        self._distribute_mode = distribute_mode
        self._nranks = world_size
        self._local_rank = rank

    def __iter__(self):
        # global sort or global shuffle
        if self._sort_type == SortType.GLOBAL:
            infos = sorted(self._dataset._sample_infos, key=lambda x: x.trg_len)
            infos = sorted(infos, key=lambda x: x.src_len)
        else:
            if self._shuffle:
                infos = self._dataset._sample_infos
                self._random.shuffle(infos)
            else:
                infos = self._dataset._sample_infos

            if self._sort_type == SortType.POOL:
                reverse = True
                for i in range(0, len(infos), self._pool_size):
                    # to avoid placing short next to long sentences
                    reverse = not reverse
                    infos[i:i + self._pool_size] = sorted(
                        infos[i:i + self._pool_size],
                        key=lambda x: x.max_len,
                        reverse=reverse)

        batches = []
        batch_creator = TokenBatchCreator(
            self.
            _batch_size) if self._use_token_batch else SentenceBatchCreator(
                self._batch_size * self._nranks)
        batch_creator = MinMaxFilter(self._max_length, self._min_length,
                                     batch_creator)

        for info in infos:
            batch = batch_creator.append(info)
            if batch is not None:
                batches.append(batch)

        if not self._clip_last_batch and len(batch_creator.batch) != 0:
            batches.append(batch_creator.batch)

        if self._shuffle_batch:
            self._random.shuffle(batches)

        if not self._use_token_batch:
            # when producing batches according to sequence number, to confirm
            # neighbor batches which would be feed and run parallel have similar
            # length (thus similar computational cost) after shuffle, we as take
            # them as a whole when shuffling and split here
            batches = [[
                batch[self._batch_size * i:self._batch_size * (i + 1)]
                for i in range(self._nranks)
            ] for batch in batches]
            batches = list(itertools.chain.from_iterable(batches))
        self.batch_number = (len(batches) + self._nranks - 1) // self._nranks

        # for multi-device
        for batch_id, batch in enumerate(batches):
            if not self._distribute_mode or (
                    batch_id % self._nranks == self._local_rank):
                batch_indices = [info.i for info in batch]
                yield batch_indices
        if self._distribute_mode and len(batches) % self._nranks != 0:
            if self._local_rank >= len(batches) % self._nranks:
                # use previous data to pad
                yield batch_indices

    def __len__(self):
        if hasattr(self, "batch_number"):  #
            return self.batch_number
        if not self._use_token_batch:
            batch_number = (
                len(self._dataset) + self._batch_size * self._nranks - 1) // (
                    self._batch_size * self._nranks)
        else:
            # for uncertain batch number, the actual value is self.batch_number
            batch_number = sys.maxsize
        return batch_number