train_utils.py 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import time
import numpy as np
import paddle
import paddle.fluid as fluid
import logging
import shutil

logger = logging.getLogger(__name__)


def log_lr_and_step():
    try:
        # In optimizers, if learning_rate is set as constant, lr_var
        # name is 'learning_rate_0', and iteration counter is not 
        # recorded. If learning_rate is set as decayed values from 
        # learning_rate_scheduler, lr_var name is 'learning_rate', 
        # and iteration counter is recorded with name '@LR_DECAY_COUNTER@', 
        # better impliment is required here
        lr_var = fluid.global_scope().find_var("learning_rate")
        if not lr_var:
            lr_var = fluid.global_scope().find_var("learning_rate_0")
        lr = np.array(lr_var.get_tensor())

        lr_count = '[-]'
        lr_count_var = fluid.global_scope().find_var("@LR_DECAY_COUNTER@")
        if lr_count_var:
            lr_count = np.array(lr_count_var.get_tensor())
        logger.info("------- learning rate {}, learning rate counter {} -----"
                    .format(np.array(lr), np.array(lr_count)))
    except:
        logger.warn("Unable to get learning_rate and LR_DECAY_COUNTER.")


50
def test_with_dataloader(exe,
51
                       compiled_test_prog,
52
                       test_dataloader,
53 54 55 56
                       test_fetch_list,
                       test_metrics,
                       log_interval=0,
                       save_model_name=''):
57 58
    if not test_dataloader:
        logger.error("[TEST] get dataloader failed.")
59 60 61
    test_metrics.reset()
    test_iter = 0

62
    for data in test_dataloader():
63 64 65 66 67 68 69 70 71 72 73
        test_outs = exe.run(compiled_test_prog,
                            fetch_list=test_fetch_list,
                            feed=data)
        test_metrics.accumulate(test_outs)
        if log_interval > 0 and test_iter % log_interval == 0:
            test_metrics.calculate_and_log_out(test_outs, \
               info = '[TEST] test_iter {} '.format(test_iter))
        test_iter += 1
    test_metrics.finalize_and_log_out("[TEST] Finish")


74
def train_with_dataloader(exe, train_prog, compiled_train_prog, train_dataloader, \
75 76 77
                        train_fetch_list, train_metrics, epochs = 10, \
                        log_interval = 0, valid_interval = 0, save_dir = './', \
                        save_model_name = 'model', fix_random_seed = False, \
78
                        compiled_test_prog = None, test_dataloader = None, \
79
                        test_fetch_list = None, test_metrics = None):
80 81
    if not train_dataloader:
        logger.error("[TRAIN] get dataloader failed.")
82 83 84 85 86 87 88 89
    epoch_periods = []
    train_loss = 0
    for epoch in range(epochs):
        log_lr_and_step()

        train_iter = 0
        epoch_periods = []

90
        for data in train_dataloader():
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
            cur_time = time.time()
            train_outs = exe.run(compiled_train_prog,
                                 fetch_list=train_fetch_list,
                                 feed=data)
            period = time.time() - cur_time
            epoch_periods.append(period)
            if log_interval > 0 and (train_iter % log_interval == 0):
                train_metrics.calculate_and_log_out(train_outs, \
                        info = '[TRAIN] Epoch {}, iter {} '.format(epoch, train_iter))
            train_iter += 1

        if len(epoch_periods) < 1:
            logger.info(
                'No iteration was executed, please check the data reader')
            sys.exit(1)

        logger.info('[TRAIN] Epoch {} training finished, average time: {}'.
                    format(epoch, np.mean(epoch_periods[1:])))
        save_model(
            exe,
            train_prog,
            save_dir,
            save_model_name,
            "_epoch{}".format(epoch),
            save_type='.pdckpt')
        save_model(
            exe,
            train_prog,
            save_dir,
            save_model_name,
            "_epoch{}".format(epoch),
            save_type='.pdparams')
        if compiled_test_prog and valid_interval > 0 and (
                epoch + 1) % valid_interval == 0:
125
            test_with_dataloader(exe, compiled_test_prog, test_dataloader,
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                               test_fetch_list, test_metrics, log_interval,
                               save_model_name)

    save_model(
        exe,
        train_prog,
        save_dir,
        save_model_name,
        '_final',
        save_type='.pdckpt')
    save_model(
        exe,
        train_prog,
        save_dir,
        save_model_name,
        '_final',
        save_type='.pdparams')
    #when fix_random seed for debug
    if fix_random_seed:
        cards = os.environ.get('CUDA_VISIBLE_DEVICES')
        gpu_num = len(cards.split(","))
        print("kpis\ttrain_cost_card{}\t{}".format(gpu_num, train_loss))
        print("kpis\ttrain_speed_card{}\t{}".format(gpu_num,
                                                    np.mean(epoch_periods)))


def save_model(exe,
               program,
               save_dir,
               model_name,
               postfix=None,
               save_type='.pdckpt'):
    """
    save_type: '.pdckpt' or '.pdparams', '.pdckpt' for all persistable variables, 
               '.pdparams' for parameters only
    """
    if not os.path.isdir(save_dir):
        os.makedirs(save_dir)
    saved_model_name = model_name + postfix + save_type

    if save_type == '.pdckpt':
        fluid.io.save_persistables(
            exe, save_dir, main_program=program, filename=saved_model_name)
    elif save_type == '.pdparams':
        fluid.io.save_params(
            exe, save_dir, main_program=program, filename=saved_model_name)
    else:
        raise NotImplementedError(
            'save_type {} not implemented, it should be either {} or {}'
            .format(save_type, '.pdckpt', '.pdparams'))
    return