network.py 7.0 KB
Newer Older
H
hetianjian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

H
hetianjian 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
import paddle
import math
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers


def network(batch_size, items_num, hidden_size, step):
    stdv = 1.0 / math.sqrt(hidden_size)

    items = layers.data(
        name="items",
        shape=[batch_size, items_num, 1],
        dtype="int64",
        append_batch_size=False)  #[bs, uniq_max, 1]
    seq_index = layers.data(
        name="seq_index",
        shape=[batch_size, items_num],
        dtype="int32",
        append_batch_size=False)  #[-1(seq_max)*batch_size, 1]
    last_index = layers.data(
        name="last_index",
        shape=[batch_size],
        dtype="int32",
        append_batch_size=False)  #[batch_size, 1]
    adj_in = layers.data(
        name="adj_in",
        shape=[batch_size, items_num, items_num],
        dtype="float32",
        append_batch_size=False)
    adj_out = layers.data(
        name="adj_out",
        shape=[batch_size, items_num, items_num],
        dtype="float32",
        append_batch_size=False)
    mask = layers.data(
        name="mask",
        shape=[batch_size, -1, 1],
        dtype="float32",
        append_batch_size=False)
    label = layers.data(
        name="label",
        shape=[batch_size, 1],
        dtype="int64",
        append_batch_size=False)

    items_emb = layers.embedding(
        input=items,
        param_attr=fluid.ParamAttr(
            name="emb",
            initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)),
        size=[items_num, hidden_size])  #[batch_size, uniq_max, h]

    pre_state = items_emb
    for i in range(step):
        pre_state = layers.reshape(
            x=pre_state, shape=[batch_size, -1, hidden_size])
        state_in = layers.fc(
            input=pre_state,
            name="state_in",
            size=hidden_size,
            act=None,
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)),
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)))  #[batch_size, uniq_max, h]
        state_out = layers.fc(
            input=pre_state,
            name="state_out",
            size=hidden_size,
            act=None,
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)),
            bias_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)))  #[batch_size, uniq_max, h]

H
hetianjian 已提交
94 95
        state_adj_in = layers.matmul(adj_in, state_in)  #[batch_size, uniq_max, h]
        state_adj_out = layers.matmul(adj_out, state_out)   #[batch_size, uniq_max, h]
H
hetianjian 已提交
96 97 98 99

        gru_input = layers.concat([state_adj_in, state_adj_out], axis=2)

        gru_input = layers.reshape(x=gru_input, shape=[-1, hidden_size * 2])
H
hetianjian 已提交
100 101 102 103 104
        gru_fc = layers.fc(
            input=gru_input,
            name="gru_fc",
            size=3 * hidden_size,
            bias_attr=False)
H
hetianjian 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        pre_state, _, _ = fluid.layers.gru_unit(
            input=gru_fc,
            hidden=layers.reshape(
                x=pre_state, shape=[-1, hidden_size]),
            size=3 * hidden_size)

    final_state = pre_state
    seq_index = layers.reshape(seq_index, shape=[-1])
    seq = layers.gather(final_state, seq_index)  #[batch_size*-1(seq_max), h]
    last = layers.gather(final_state, last_index)  #[batch_size, h]

    seq = layers.reshape(
        seq, shape=[batch_size, -1, hidden_size])  #[batch_size, -1(seq_max), h]
    last = layers.reshape(
        last, shape=[batch_size, hidden_size])  #[batch_size, h]

    seq_fc = layers.fc(
        input=seq,
        name="seq_fc",
        size=hidden_size,
        bias_attr=False,
        act=None,
        num_flatten_dims=2,
H
hetianjian 已提交
128 129
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
H
hetianjian 已提交
130
            low=-stdv, high=stdv)))  #[batch_size, -1(seq_max), h]
H
hetianjian 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    last_fc = layers.fc(
        input=last,
        name="last_fc",
        size=hidden_size,
        bias_attr=False,
        act=None,
        num_flatten_dims=1,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
            low=-stdv, high=stdv)))  #[bathc_size, h]

    seq_fc_t = layers.transpose(
        seq_fc, perm=[1, 0, 2])  #[-1(seq_max), batch_size, h]
    add = layers.elementwise_add(
        seq_fc_t, last_fc)  #[-1(seq_max), batch_size, h]
H
hetianjian 已提交
146 147 148 149
    b = layers.create_parameter(
        shape=[hidden_size],
        dtype='float32',
        default_initializer=fluid.initializer.Constant(value=0.0))  #[h]
H
hetianjian 已提交
150
    add = layers.elementwise_add(add, b)  #[-1(seq_max), batch_size, h]
H
hetianjian 已提交
151

H
hetianjian 已提交
152
    add_sigmoid = layers.sigmoid(add) #[-1(seq_max), batch_size, h] 
H
hetianjian 已提交
153
    add_sigmoid = layers.transpose(
H
hetianjian 已提交
154 155 156 157 158 159 160 161 162 163 164 165
        add_sigmoid, perm=[1, 0, 2])  #[batch_size, -1(seq_max), h]

    weight = layers.fc(
        input=add_sigmoid,
        name="weight_fc",
        size=1,
        act=None,
        num_flatten_dims=2,
        bias_attr=False,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)))  #[batch_size, -1, 1]
H
hetianjian 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    weight *= mask
    weight_mask = layers.elementwise_mul(seq, weight, axis=0)
    global_attention = layers.reduce_sum(weight_mask, dim=1)

    final_attention = layers.concat(
        [global_attention, last_fc], axis=1)  #[batch_size, 2*h]
    final_attention_fc = layers.fc(
        input=final_attention,
        name="fina_attention_fc",
        size=hidden_size,
        bias_attr=False,
        act=None,
        param_attr=fluid.ParamAttr(initializer=fluid.initializer.Uniform(
            low=-stdv, high=stdv)))  #[batch_size, h]

    all_vocab = layers.create_global_var(
        shape=[items_num - 1, 1],
        value=0,
        dtype="int64",
        persistable=True,
        name="all_vocab")

    all_emb = layers.embedding(
        input=all_vocab,
        param_attr=fluid.ParamAttr(
            name="emb",
            initializer=fluid.initializer.Uniform(
                low=-stdv, high=stdv)),
        size=[items_num, hidden_size])  #[all_vocab, h]

    logits = layers.matmul(
        x=final_attention_fc, y=all_emb,
        transpose_y=True)  #[batch_size, all_vocab]
    softmax = layers.softmax_with_cross_entropy(
        logits=logits, label=label)  #[batch_size, 1]
    loss = layers.reduce_mean(softmax)  # [1]
    acc = layers.accuracy(input=logits, label=label, k=20)
    return loss, acc