urban_sound.py 3.4 KB
Newer Older
K
KP 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
import os
from typing import List, Tuple

from ..utils.download import download_and_decompress
from ..utils.env import DATA_HOME
from ..utils.log import logger
from .dataset import AudioClassificationDataset

__all__ = ['UrbanSound8K']


class UrbanSound8K(AudioClassificationDataset):
    """
    UrbanSound8K Dataset
    """

    archieves = [
        {
            'url': 'https://zenodo.org/record/1203745/files/UrbanSound8K.tar.gz',
            'md5': '9aa69802bbf37fb986f71ec1483a196e',
        },
    ]
    meta = os.path.join('UrbanSound8K', 'metadata', 'UrbanSound8K.csv')
    meta_info = collections.namedtuple('META_INFO',
                                       ('filename', 'fsid', 'start', 'end', 'salience', 'fold', 'class_id', 'label'))
    audio_path = os.path.join('UrbanSound8K', 'audio')
    sample_rate = 48000  # 48 khz
    duration = 4  # 4s

    def __init__(self, mode: str = 'train', split: int = 1, feat_type: str = 'raw', **kwargs):
        files, labels = self._get_data(mode, split)
        super(UrbanSound8K, self).__init__(files=files,
                                           labels=labels,
                                           sample_rate=self.sample_rate,
                                           feat_type=feat_type,
                                           **kwargs)
        """
        Ags:
            mode (:obj:`str`, `optional`, defaults to `train`):
                It identifies the dataset mode (train or dev).
            split (:obj:`int`, `optional`, defaults to 1):
                It specify the fold of dev dataset.
            feat_type (:obj:`str`, `optional`, defaults to `raw`):
                It identifies the feature type that user wants to extrace of an audio file.
        """

    def _get_meta_info(self):
        ret = []
        with open(os.path.join(DATA_HOME, self.meta), 'r') as rf:
            for line in rf.readlines()[1:]:
                ret.append(self.meta_info(*line.strip().split(',')))
        return ret

    def _get_data(self, mode: str, split: int) -> Tuple[List[str], List[int]]:
        if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
            not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
            download_and_decompress(self.archieves, DATA_HOME)

        meta_info = self._get_meta_info()

        files = []
        labels = []
        for sample in meta_info:
            filename, _, _, _, _, fold, target, _ = sample
            if mode == 'train' and int(fold) != split:
                files.append(os.path.join(DATA_HOME, self.audio_path, f'fold{fold}', filename))
                labels.append(int(target))

            if mode != 'train' and int(fold) == split:
                files.append(os.path.join(DATA_HOME, self.audio_path, f'fold{fold}', filename))
                labels.append(int(target))

        return files, labels