rc_model.py 11.3 KB
Newer Older
Q
qiuxuezhong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid.layers as layers
import paddle.fluid as fluid
import numpy as np


def dropout(input, args):
    if args.drop_rate:
        return layers.dropout(
            input,
            dropout_prob=args.drop_rate,
            seed=args.random_seed,
            is_test=False)
    else:
        return input


def bi_lstm_encoder(input_seq, gate_size, para_name, args):
    # A bi-directional lstm encoder implementation.
    # Linear transformation part for input gate, output gate, forget gate
    # and cell activation vectors need be done outside of dynamic_lstm.
    # So the output size is 4 times of gate_size.

    input_forward_proj = layers.fc(
        input=input_seq,
        param_attr=fluid.ParamAttr(name=para_name + '_fw_gate_w'),
        size=gate_size * 4,
        act=None,
        bias_attr=False)
    input_reversed_proj = layers.fc(
        input=input_seq,
        param_attr=fluid.ParamAttr(name=para_name + '_bw_gate_w'),
        size=gate_size * 4,
        act=None,
        bias_attr=False)
    forward, _ = layers.dynamic_lstm(
        input=input_forward_proj,
        size=gate_size * 4,
        use_peepholes=False,
        param_attr=fluid.ParamAttr(name=para_name + '_fw_lstm_w'),
        bias_attr=fluid.ParamAttr(name=para_name + '_fw_lstm_b'))
    reversed, _ = layers.dynamic_lstm(
        input=input_reversed_proj,
        param_attr=fluid.ParamAttr(name=para_name + '_bw_lstm_w'),
        bias_attr=fluid.ParamAttr(name=para_name + '_bw_lstm_b'),
        size=gate_size * 4,
        is_reverse=True,
        use_peepholes=False)

    encoder_out = layers.concat(input=[forward, reversed], axis=1)
    return encoder_out


X
xuezhong 已提交
71
def get_data(input_name, lod_level, args):
Q
qiuxuezhong 已提交
72
    input_ids = layers.data(
X
xuezhong 已提交
73 74 75 76 77
        name=input_name, shape=[1], dtype='int64', lod_level=lod_level)
    return input_ids


def embedding(input_ids, shape, args):
Q
qiuxuezhong 已提交
78 79 80 81
    input_embedding = layers.embedding(
        input=input_ids,
        size=shape,
        dtype='float32',
X
xuezhong 已提交
82
        is_sparse=True,
Q
qiuxuezhong 已提交
83
        param_attr=fluid.ParamAttr(name='embedding_para'))
X
xuezhong 已提交
84 85
    return input_embedding

Q
qiuxuezhong 已提交
86

X
xuezhong 已提交
87
def encoder(input_embedding, para_name, hidden_size, args):
Q
qiuxuezhong 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    encoder_out = bi_lstm_encoder(
        input_seq=input_embedding,
        gate_size=hidden_size,
        para_name=para_name,
        args=args)
    return dropout(encoder_out, args)


def attn_flow(q_enc, p_enc, p_ids_name, args):
    tag = p_ids_name + "::"
    drnn = layers.DynamicRNN()
    with drnn.block():
        h_cur = drnn.step_input(p_enc)
        u_all = drnn.static_input(q_enc)
        h_expd = layers.sequence_expand(x=h_cur, y=u_all)
        s_t_mul = layers.elementwise_mul(x=u_all, y=h_expd, axis=0)
        s_t_sum = layers.reduce_sum(input=s_t_mul, dim=1, keep_dim=True)
        s_t_re = layers.reshape(s_t_sum, shape=[-1, 0])
        s_t = layers.sequence_softmax(input=s_t_re)
        u_expr = layers.elementwise_mul(x=u_all, y=s_t, axis=0)
        u_expr = layers.sequence_pool(input=u_expr, pool_type='sum')

        b_t = layers.sequence_pool(input=s_t_sum, pool_type='max')
        drnn.output(u_expr, b_t)
    U_expr, b = drnn()
    b_norm = layers.sequence_softmax(input=b)
    h_expr = layers.elementwise_mul(x=p_enc, y=b_norm, axis=0)
    h_expr = layers.sequence_pool(input=h_expr, pool_type='sum')

    H_expr = layers.sequence_expand(x=h_expr, y=p_enc)
    H_expr = layers.lod_reset(x=H_expr, y=p_enc)
    h_u = layers.elementwise_mul(x=p_enc, y=U_expr, axis=0)
    h_h = layers.elementwise_mul(x=p_enc, y=H_expr, axis=0)

    g = layers.concat(input=[p_enc, U_expr, h_u, h_h], axis=1)
    return dropout(g, args)


def lstm_step(x_t, hidden_t_prev, cell_t_prev, size, para_name, args):
    def linear(inputs, para_name, args):
        return layers.fc(input=inputs,
                         size=size,
                         param_attr=fluid.ParamAttr(name=para_name + '_w'),
                         bias_attr=fluid.ParamAttr(name=para_name + '_b'))

    input_cat = layers.concat([hidden_t_prev, x_t], axis=1)
    forget_gate = layers.sigmoid(x=linear(input_cat, para_name + '_lstm_f',
                                          args))
    input_gate = layers.sigmoid(x=linear(input_cat, para_name + '_lstm_i',
                                         args))
    output_gate = layers.sigmoid(x=linear(input_cat, para_name + '_lstm_o',
                                          args))
    cell_tilde = layers.tanh(x=linear(input_cat, para_name + '_lstm_c', args))

    cell_t = layers.sums(input=[
        layers.elementwise_mul(
            x=forget_gate, y=cell_t_prev), layers.elementwise_mul(
                x=input_gate, y=cell_tilde)
    ])

    hidden_t = layers.elementwise_mul(x=output_gate, y=layers.tanh(x=cell_t))

    return hidden_t, cell_t


#point network
def point_network_decoder(p_vec, q_vec, hidden_size, args):
    tag = 'pn_decoder:'
    init_random = fluid.initializer.Normal(loc=0.0, scale=1.0)

    random_attn = layers.create_parameter(
        shape=[1, hidden_size],
        dtype='float32',
        default_initializer=init_random)
    random_attn = layers.fc(
        input=random_attn,
        size=hidden_size,
        act=None,
        param_attr=fluid.ParamAttr(name=tag + 'random_attn_fc_w'),
        bias_attr=fluid.ParamAttr(name=tag + 'random_attn_fc_b'))
    random_attn = layers.reshape(random_attn, shape=[-1])
    U = layers.fc(input=q_vec,
                  param_attr=fluid.ParamAttr(name=tag + 'q_vec_fc_w'),
                  bias_attr=False,
                  size=hidden_size,
                  act=None) + random_attn
    U = layers.tanh(U)

    logits = layers.fc(input=U,
                       param_attr=fluid.ParamAttr(name=tag + 'logits_fc_w'),
                       bias_attr=fluid.ParamAttr(name=tag + 'logits_fc_b'),
                       size=1,
                       act=None)
    scores = layers.sequence_softmax(input=logits)
    pooled_vec = layers.elementwise_mul(x=q_vec, y=scores, axis=0)
    pooled_vec = layers.sequence_pool(input=pooled_vec, pool_type='sum')

    init_state = layers.fc(
        input=pooled_vec,
        param_attr=fluid.ParamAttr(name=tag + 'init_state_fc_w'),
        bias_attr=fluid.ParamAttr(name=tag + 'init_state_fc_b'),
        size=hidden_size,
        act=None)

    def custom_dynamic_rnn(p_vec, init_state, hidden_size, para_name, args):
        tag = para_name + "custom_dynamic_rnn:"

        def static_rnn(step,
                       p_vec=p_vec,
                       init_state=None,
                       para_name='',
                       args=args):
            tag = para_name + "static_rnn:"
            ctx = layers.fc(
                input=p_vec,
                param_attr=fluid.ParamAttr(name=tag + 'context_fc_w'),
                bias_attr=fluid.ParamAttr(name=tag + 'context_fc_b'),
                size=hidden_size,
                act=None)

            beta = []
            c_prev = init_state
            m_prev = init_state
            for i in range(step):
                m_prev0 = layers.fc(
                    input=m_prev,
                    size=hidden_size,
                    act=None,
                    param_attr=fluid.ParamAttr(name=tag + 'm_prev0_fc_w'),
                    bias_attr=fluid.ParamAttr(name=tag + 'm_prev0_fc_b'))
                m_prev1 = layers.sequence_expand(x=m_prev0, y=ctx)

                Fk = ctx + m_prev1
                Fk = layers.tanh(Fk)
                logits = layers.fc(
                    input=Fk,
                    size=1,
                    act=None,
                    param_attr=fluid.ParamAttr(name=tag + 'logits_fc_w'),
                    bias_attr=fluid.ParamAttr(name=tag + 'logits_fc_b'))

                scores = layers.sequence_softmax(input=logits)
                attn_ctx = layers.elementwise_mul(x=p_vec, y=scores, axis=0)
                attn_ctx = layers.sequence_pool(input=attn_ctx, pool_type='sum')

                hidden_t, cell_t = lstm_step(
                    attn_ctx,
                    hidden_t_prev=m_prev,
                    cell_t_prev=c_prev,
                    size=hidden_size,
                    para_name=tag,
                    args=args)
                m_prev = hidden_t
                c_prev = cell_t
                beta.append(scores)
            return beta

        return static_rnn(
            2, p_vec=p_vec, init_state=init_state, para_name=para_name)

    fw_outputs = custom_dynamic_rnn(p_vec, init_state, hidden_size, tag + "fw:",
                                    args)
    bw_outputs = custom_dynamic_rnn(p_vec, init_state, hidden_size, tag + "bw:",
                                    args)

    start_prob = layers.elementwise_add(
        x=fw_outputs[0], y=bw_outputs[1], axis=0) / 2
    end_prob = layers.elementwise_add(
        x=fw_outputs[1], y=bw_outputs[0], axis=0) / 2

    return start_prob, end_prob


def fusion(g, args):
    m = bi_lstm_encoder(
        input_seq=g, gate_size=args.hidden_size, para_name='fusion', args=args)
    return dropout(m, args)


def rc_model(hidden_size, vocab, args):
    emb_shape = [vocab.size(), vocab.embed_dim]
X
xuezhong 已提交
269 270 271 272 273
    start_labels = layers.data(
        name="start_lables", shape=[1], dtype='float32', lod_level=1)
    end_labels = layers.data(
        name="end_lables", shape=[1], dtype='float32', lod_level=1)

Q
qiuxuezhong 已提交
274
    # stage 1:encode 
X
xuezhong 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    q_id0 = get_data('q_id0', 1, args)

    q_ids = get_data('q_ids', 2, args)
    p_ids_name = 'p_ids'

    p_ids = get_data('p_ids', 2, args)
    p_embs = embedding(p_ids, emb_shape, args)
    q_embs = embedding(q_ids, emb_shape, args)
    drnn = layers.DynamicRNN()
    with drnn.block():
        p_emb = drnn.step_input(p_embs)
        q_emb = drnn.step_input(q_embs)

        p_enc = encoder(p_emb, 'p_enc', hidden_size, args)
        q_enc = encoder(q_emb, 'q_enc', hidden_size, args)
Q
qiuxuezhong 已提交
290 291

        # stage 2:match
X
xuezhong 已提交
292
        g_i = attn_flow(q_enc, p_enc, p_ids_name, args)
Q
qiuxuezhong 已提交
293 294
        # stage 3:fusion
        m_i = fusion(g_i, args)
X
xuezhong 已提交
295 296 297 298 299
        drnn.output(m_i, q_enc)

    ms, q_encs = drnn()
    p_vec = layers.lod_reset(x=ms, y=start_labels)
    q_vec = layers.lod_reset(x=q_encs, y=q_id0)
Q
qiuxuezhong 已提交
300 301 302

    # stage 4:decode 
    start_probs, end_probs = point_network_decoder(
X
xuezhong 已提交
303
        p_vec=p_vec, q_vec=q_vec, hidden_size=hidden_size, args=args)
Q
qiuxuezhong 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

    cost0 = layers.sequence_pool(
        layers.cross_entropy(
            input=start_probs, label=start_labels, soft_label=True),
        'sum')
    cost1 = layers.sequence_pool(
        layers.cross_entropy(
            input=end_probs, label=end_labels, soft_label=True),
        'sum')

    cost0 = layers.mean(cost0)
    cost1 = layers.mean(cost1)
    cost = cost0 + cost1
    cost.persistable = True

X
xuezhong 已提交
319 320
    feeding_list = ["q_ids", "start_lables", "end_lables", "p_ids", "q_id0"]
    return cost, start_probs, end_probs, ms, feeding_list