link_prediction.py 5.6 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import yaml
import os
import io
import random
import time
import numpy as np
from easydict import EasyDict as edict

import paddle
from pgl.contrib.imperative.graph_tensor import GraphTensor

from models import ErnieSageForLinkPrediction
from data import GraphDataset, TrainData, PredictData, GraphDataLoader
J
Jack Zhou 已提交
30
from paddlenlp.utils.log import logger
Z
Zeyu Chen 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158


def set_seed(config):
    random.seed(config.seed)
    np.random.seed(config.seed)
    paddle.seed(config.seed)


def do_train(config):
    paddle.set_device("gpu" if config.n_gpu else "cpu")
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()
    set_seed(config)

    graphs = [GraphTensor() for x in range(len(config.samples))]
    mode = 'train'
    data = TrainData(config.graph_work_path)
    model = ErnieSageForLinkPrediction.from_pretrained(
        config.model_name_or_path, config=config)
    model = paddle.DataParallel(model)

    train_dataset = GraphDataset(graphs, data, config.batch_size,
                                 config.samples, mode, config.graph_work_path)
    graph_loader = GraphDataLoader(train_dataset)

    optimizer = paddle.optimizer.Adam(
        learning_rate=config.lr, parameters=model.parameters())

    global_step = 0
    tic_train = time.time()
    for epoch in range(config.epoch):
        for step, (graphs, datas) in enumerate(graph_loader()):
            global_step += 1
            loss, outputs = model(graphs, datas)
            if global_step % config.log_per_step == 0:
                logger.info(
                    "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                    % (global_step, epoch, step, loss,
                       config.log_per_step / (time.time() - tic_train)))
                tic_train = time.time()
            loss.backward()
            optimizer.step()
            optimizer.clear_gradients()
            if global_step % config.save_per_step == 0:
                if (not config.n_gpu > 1) or paddle.distributed.get_rank() == 0:
                    output_dir = os.path.join(config.output_path,
                                              "model_%d" % global_step)
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model._layers.save_pretrained(output_dir)


def tostr(data_array):
    return " ".join(["%.5lf" % d for d in data_array])


def do_predict(config):
    paddle.set_device("gpu" if config.n_gpu else "cpu")
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()
    set_seed(config)

    graphs = [GraphTensor() for x in range(len(config.samples))]
    mode = 'predict'
    num_nodes = int(
        np.load(os.path.join(config.graph_work_path, "num_nodes.npy")))
    data = PredictData(num_nodes)
    model = ErnieSageForLinkPrediction.from_pretrained(
        config.model_name_or_path, config=config)
    model = paddle.DataParallel(model)

    train_dataset = GraphDataset(
        graphs,
        data,
        config.batch_size,
        config.samples,
        mode,
        config.graph_work_path,
        shuffle=False)
    graph_loader = GraphDataLoader(train_dataset)

    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
    id2str = io.open(
        os.path.join(config.graph_work_path, "terms.txt"),
        encoding=config.encoding).readlines()
    if not os.path.exists(config.output_path):
        os.mkdir(config.output_path)
    fout = io.open(
        "%s/part-%s" % (config.output_path, trainer_id), "w", encoding="utf8")

    global_step = 0
    epoch = 0
    tic_train = time.time()
    for step, (graphs, datas) in enumerate(graph_loader()):
        global_step += 1
        loss, outputs = model(graphs, datas)
        for user_feat, user_real_index in zip(outputs[0].numpy(),
                                              outputs[3].numpy()):
            # user_feat, user_real_index = 
            sri = id2str[int(user_real_index)].strip("\n")
            line = "{}\t{}\n".format(sri, tostr(user_feat))
            fout.write(line)
        if global_step % config.log_per_step == 0:
            logger.info(
                "predict step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
                % (global_step, epoch, step, loss,
                   config.log_per_step / (time.time() - tic_train)))
            tic_train = time.time()
    fout.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='main')
    parser.add_argument("--conf", type=str, default="./config.yaml")
    parser.add_argument("--do_predict", action='store_true', default=False)
    args = parser.parse_args()
    config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader))
    logger.info(config)
    if args.do_predict:
        do_func = do_predict
    else:
        do_func = do_train

    if config.n_gpu > 1 and paddle.fluid.core.is_compiled_with_cuda(
    ) and paddle.fluid.core.get_cuda_device_count() > 1:
        paddle.distributed.spawn(do_func, args=(config, ), nprocs=config.n_gpu)
    else:
        do_func(config)