train.py 7.0 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
import os
import time
import sys

import argparse
import logging
import numpy as np
import yaml
from attrdict import AttrDict
from pprint import pprint

import paddle
import paddle.distributed as dist

L
liu zhengxi 已提交
15
from paddlenlp.transformers import TransformerModel, CrossEntropyCriterion
Z
Zeyu Chen 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

sys.path.append("../")
import reader
from utils.record import AverageStatistical

FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config",
        default="../configs/transformer.big.yaml",
        type=str,
        help="Path of the config file. ")
    args = parser.parse_args()
    return args


def do_train(args):
    paddle.enable_static()
L
Leo Chen 已提交
39 40
    places = paddle.static.cuda_places() if args.use_gpu else paddle.static.cpu_places()
    trainer_count = len(places)
Z
Zeyu Chen 已提交
41 42 43 44 45 46 47

    # Set seed for CE
    random_seed = eval(str(args.random_seed))
    if random_seed is not None:
        paddle.seed(random_seed)

    # Define data loader
L
Leo Chen 已提交
48
    (train_loader), (eval_loader) = reader.create_data_loader(args, places)
Z
Zeyu Chen 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    train_program = paddle.static.Program()
    startup_program = paddle.static.Program()
    with paddle.static.program_guard(train_program, startup_program):
        src_word = paddle.static.data(
            name="src_word", shape=[None, None], dtype="int64")
        trg_word = paddle.static.data(
            name="trg_word", shape=[None, None], dtype="int64")
        lbl_word = paddle.static.data(
            name="lbl_word", shape=[None, None, 1], dtype="int64")

        # Define model
        transformer = TransformerModel(
            src_vocab_size=args.src_vocab_size,
            trg_vocab_size=args.trg_vocab_size,
            max_length=args.max_length + 1,
            n_layer=args.n_layer,
            n_head=args.n_head,
            d_model=args.d_model,
            d_inner_hid=args.d_inner_hid,
            dropout=args.dropout,
            weight_sharing=args.weight_sharing,
            bos_id=args.bos_idx,
            eos_id=args.eos_idx)
        # Define loss
        criterion = CrossEntropyCriterion(args.label_smooth_eps, args.bos_idx)

        logits = transformer(src_word=src_word, trg_word=trg_word)

        sum_cost, avg_cost, token_num = criterion(logits, lbl_word)

        scheduler = paddle.optimizer.lr.NoamDecay(
            args.d_model, args.warmup_steps, args.learning_rate, last_epoch=0)

        # Define optimizer
        optimizer = paddle.optimizer.Adam(
            learning_rate=scheduler,
            beta1=args.beta1,
            beta2=args.beta2,
            epsilon=float(args.eps),
            parameters=transformer.parameters())

        optimizer.minimize(avg_cost)

L
Leo Chen 已提交
93
    exe = paddle.static.Executor()
Z
Zeyu Chen 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    exe.run(startup_program)

    build_strategy = paddle.static.BuildStrategy()
    exec_strategy = paddle.static.ExecutionStrategy()

    compiled_train_program = paddle.static.CompiledProgram(
        train_program).with_data_parallel(
            loss_name=avg_cost.name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)

    # the best cross-entropy value with label smoothing
    loss_normalizer = -(
        (1. - args.label_smooth_eps) * np.log(
            (1. - args.label_smooth_eps)) + args.label_smooth_eps *
        np.log(args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20))

    step_idx = 0

    # For benchmark
    reader_cost_avg = AverageStatistical()
    batch_cost_avg = AverageStatistical()
    batch_ips_avg = AverageStatistical()

    for pass_id in range(args.epoch):
        batch_id = 0
        batch_start = time.time()
        pass_start_time = batch_start
L
liu zhengxi 已提交
122
        for data in train_loader:
Z
Zeyu Chen 已提交
123 124 125
            # NOTE: used for benchmark and use None as default.
            if args.max_iter and step_idx == args.max_iter:
                return
L
liu zhengxi 已提交
126 127
            if trainer_count == 1:
                data = [data]
Z
Zeyu Chen 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
            train_reader_cost = time.time() - batch_start

            outs = exe.run(compiled_train_program,
                           feed=[{
                               'src_word': data[i][0],
                               'trg_word': data[i][1],
                               'lbl_word': data[i][2],
                           } for i in range(trainer_count)],
                           fetch_list=[sum_cost.name, token_num.name])
            scheduler.step()

            train_batch_cost = time.time() - batch_start
            reader_cost_avg.record(train_reader_cost)
            batch_cost_avg.record(train_batch_cost)
            batch_ips_avg.record(train_batch_cost, np.asarray(outs[1]).sum())

            if step_idx % args.print_step == 0:
                sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[
                    1])
                # Sum the cost from multi-devices
                total_sum_cost = sum_cost_val.sum()
                total_token_num = token_num_val.sum()
                total_avg_cost = total_sum_cost / total_token_num

                if step_idx == 0:
                    logging.info(
                        "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                        "normalized loss: %f, ppl: %f" %
                        (step_idx, pass_id, batch_id, total_avg_cost,
                         total_avg_cost - loss_normalizer,
                         np.exp([min(total_avg_cost, 100)])))
                else:
                    train_avg_batch_cost = args.print_step / batch_cost_avg.get_total_time(
                    )
                    logging.info(
                        "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                        "normalized loss: %f, ppl: %f, avg_speed: %.2f step/s, "
                        "batch_cost: %.5f sec, reader_cost: %.5f sec, tokens: %d, "
                        "ips: %.5f words/sec" %
                        (step_idx, pass_id, batch_id, total_avg_cost,
                         total_avg_cost - loss_normalizer,
                         np.exp([min(total_avg_cost, 100)]),
                         train_avg_batch_cost, batch_cost_avg.get_average(),
                         reader_cost_avg.get_average(),
                         batch_ips_avg.get_total_cnt(),
                         batch_ips_avg.get_average_per_sec()))
                reader_cost_avg.reset()
                batch_cost_avg.reset()
                batch_ips_avg.reset()

            if step_idx % args.save_step == 0 and step_idx != 0:
                if args.save_model:
                    model_path = os.path.join(
                        args.save_model, "step_" + str(step_idx), "transformer")
L
liu zhengxi 已提交
182
                    paddle.static.save(train_program, model_path)
Z
Zeyu Chen 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

            batch_id += 1
            step_idx += 1
            batch_start = time.time()

    paddle.disable_static()


if __name__ == "__main__":
    ARGS = parse_args()
    yaml_file = ARGS.config
    with open(yaml_file, 'rt') as f:
        args = AttrDict(yaml.safe_load(f))
        pprint(args)

    do_train(args)