tokenizer.py 12.2 KB
Newer Older
Z
Zhong Hui 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import regex as re
import unicodedata
import json
import sentencepiece
import jieba

from functools import lru_cache
from collections import namedtuple
from .. import PretrainedTokenizer
from ..tokenizer_utils import convert_to_unicode, whitespace_tokenize,\
    _is_whitespace, _is_control, _is_punctuation

__all__ = [
    'GPT2Tokenizer',
    'GPT2ChineseTokenizer',
]

COMMAND_TUPLE = namedtuple('CommandToken', ('name', 'token', 'Id'))
TYPE_TUPLE = namedtuple('TypeToken', ('name', 'token', 'Id'))


class CommandToken(object):
    def __init__(self, name, token, Id):
        self.name = name
        self.token = token
        self.Id = Id

    def __str__(self):
        return str(COMMAND_TUPLE(self.name, self.token, self.Id))


@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    _chr = chr
    bs = list(range(ord("!"), ord("~") + 1)) + list(
        range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8 + n)
            n += 1
    cs = [_chr(n) for n in cs]
    return dict(zip(bs, cs))


def get_pairs(word):
    """Return set of symbol pairs in a word.

    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs


class GPT2ChineseTokenizer(PretrainedTokenizer):
    """
    Constructs a GPT2 Chinese tokenizer. It uses a basic tokenizer to do punctuation
    splitting, lower casing and so on, and follows a WordPiece tokenizer to
    tokenize as subwords.
    """
    resource_files_names = {
        "vocab_file": "vocab.json",
        "model_file": "sentencepiece.model"
    }  # for save_pretrained
    pretrained_resource_files_map = {
        "vocab_file": {
            "gpt2-base-cn":
            "https://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-base-cn-vocab.json",
        },
        "model_file": {
            "gpt2-base-cn":
            "https://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-base-cn-sentencepiece.model"
        }
    }
    pretrained_init_configuration = {"gpt2-base-cn": {"do_lower_case": True}, }

    def __init__(self,
                 vocab_file,
                 model_file,
                 do_lower_case=True,
                 max_len=512,
                 bod_id="<bod>",
                 eod_id="<eod>",
                 max_length=None):

        if not os.path.isfile(vocab_file):
            raise ValueError(
                "Can't find a vocabulary file at path '{}'. To load the "
                "vocabulary from a pretrained model please use "
                "`tokenizer = GPT2Tokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
                .format(vocab_file))
        self.max_len = max_len if max_len is not None else int(1e12)
        self.encoder = json.load(open(vocab_file))
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.sp = sentencepiece.SentencePieceProcessor(model_file=model_file)
        self.translator = str.maketrans(" \n", "\u2582\u2583")

    def tokenize(self, text):
        """ Tokenize a string. """
        seg_list = [
            x.translate(self.translator) for x in jieba.cut(text, cut_all=False)
        ]
        new_seg = " ".join(seg_list)
        return self.sp.encode(new_seg)

    def encode(self, text):
        return self.convert_tokens_to_ids(text)

    def decode(self, tokens):
        return self.convert_ids_to_tokens(tokens)

    def convert_tokens_to_ids(self, text):
        res = self.tokenize(text)
        return res

    def convert_ids_to_tokens(self, tokens):
        text = self.sp.decode(tokens)
        text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583',
                                                                    '\n')
        return text


class GPT2Tokenizer(PretrainedTokenizer):
    resource_files_names = {
        "vocab_file": "vocab.json",
        "merges_file": "merges.txt"
    }  # for save_pretrained
    pretrained_resource_files_map = {
        "vocab_file": {
            "gpt2-large-en":
            "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-large-en-vocab.json",
            "gpt2-medium-en":
            "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-medium-en-vocab.json",
            "gpt2-small-en":
            "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-small-en-vocab.json",
        },
        "merges_file": {
            "gpt2-large-en":
            "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-large-en-merges.txt",
            "gpt2-medium-en":
            "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-medium-en-merges.txt",
            "gpt2-small-en":
            "http://paddlenlp.bj.bcebos.com/models/transformers/gpt2/gpt2-small-en-merges.txt",
        }
    }
    pretrained_init_configuration = {
        "gpt2-large-en": {
            "do_lower_case": True
        },
        "gpt2-medium-en": {
            "do_lower_case": True
        },
        "gpt2-small-en": {
            "do_lower_case": True
        },
    }

    def __init__(self,
                 vocab_file,
                 merges_file,
                 errors='replace',
                 special_tokens=None,
                 max_len=None,
                 do_lower_case=True):
        self.max_len = int(1e12)
        self.num_command_tokens = 2
        self.num_type_tokens = 2

        self.encoder = json.load(open(vocab_file))
        self.decoder = {v: k for k, v in self.encoder.items()}

        # construct the command tokens
        self._command_tokens = [
            CommandToken('pad', '<|endoftext|>', self.encoder['<|endoftext|>']),
            CommandToken('eod', '<|endoftext|>', self.encoder['<|endoftext|>']),
        ]
        self.command_name_map = {tok.name: tok for tok in self._command_tokens}
        self.command_token_map = {
            tok.token: tok
            for tok in self._command_tokens
        }
        self.command_id_map = {tok.Id: tok for tok in self._command_tokens}

        self.num_tokens = len(self.encoder)
        self.num_text_tokens = self.num_tokens - 1
        self.errors = errors  # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        self.pat = re.compile(
            r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
        )

        self.special_tokens = {}
        self.special_tokens_decoder = {}
        self.set_special_tokens(special_tokens)

    def __len__(self):
        return len(self.encoder) + len(self.special_tokens)

    def set_special_tokens(self, special_tokens):
        """ Add a list of additional tokens to the encoder.
            The additional tokens are indexed starting from the last index of the
            current vocabulary in the order of the `special_tokens` list.
        """
        if not special_tokens:
            self.special_tokens = {}
            self.special_tokens_decoder = {}
            return
        self.special_tokens = dict((tok, len(self.encoder) + i)
                                   for i, tok in enumerate(special_tokens))
        self.special_tokens_decoder = {
            v: k
            for k, v in self.special_tokens.items()
        }
        logger.info("Special tokens {}".format(self.special_tokens))

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(
                pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word) - 1 and word[i +
                                                                   1] == second:
                    new_word.append(first + second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def tokenize(self, text):
        """ Tokenize a string. """
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(
                bpe_token for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def convert_tokens_to_ids(self, tokens):
        """ Converts a sequence of tokens into ids using the vocab. """
        ids = []
        if isinstance(tokens, str):
            if tokens in self.special_tokens:
                return self.special_tokens[tokens]
            else:
                return self.encoder.get(tokens, 0)
        for token in tokens:
            if token in self.special_tokens:
                ids.append(self.special_tokens[token])
            else:
                ids.append(self.encoder.get(token, 0))
        if len(ids) > self.max_len:
            logger.warning(
                "Token indices sequence length is longer than the specified maximum "
                " sequence length for this OpenAI GPT model ({} > {}). Running this"
                " sequence through the model will result in indexing errors".
                format(len(ids), self.max_len))
        return ids

    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        tokens = []
        for i in ids:
            if i in self.special_tokens_decoder:
                if not skip_special_tokens:
                    tokens.append(self.special_tokens_decoder[i])
            else:
                tokens.append(self.decoder[i])
        return tokens

    def encode(self, text, fn=None):
        processed_text = text
        if fn is not None:
            processed_text = fn(text)
        ids = self.convert_tokens_to_ids(self.tokenize(processed_text))
        return ids

    def decode(self, tokens):
        # TODO
        text = ''.join([self.decoder[token] for token in tokens])
        text = bytearray([self.byte_decoder[c] for c in text]).decode(
            'utf-8', errors=self.errors)
        return text