tf2paddle.py 6.9 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
import os
import re
import collections
import struct
import gzip
import tarfile
import cStringIO
import numpy as np
from paddle.proto.ParameterConfig_pb2 import ParameterConfig
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import tensorflow as tf


class ModelConverter(object):
    def __init__(self,
                 paddle_tar_name,
                 param_name_map=None,
                 layer_name_map=None,
                 layer_type_map=None):
        self.tar_name = paddle_tar_name
        self.param_name_map = param_name_map
        self.layer_name_map = layer_name_map
        self.layer_type_map = layer_type_map
        self.params = dict()

    def convert(self):
        layers_params = self.arrange_layer_params()
        for layer_name in layers_params.keys():
            layer_params, layer_params_names, layer_type = layers_params[
                layer_name]
            if len(layer_params) > 0:
                if not layer_type:
                    assert layer_type_map and (
                        layer_type_map.get(layer_name) in ["conv", "bn", "fc"])
                    layer_type = layer_type_map[layer_name]
                self.pre_layer_name = getattr(
                    self, "convert_" + layer_type + "_layer")(
                        layer_params,
                        params_names=[
                            self.param_name_map.get(name)
                            if self.param_name_map else None
                            for name in layer_params_names
                        ],
                        name=None if self.layer_name_map == None else
                        self.layer_name_map.get(layer_name))
        with gzip.open(self.tar_name, 'w') as f:
            self.to_tar(f)
        return

    def to_tar(self, f):
        tar = tarfile.TarFile(fileobj=f, mode='w')
        for param_name in self.params.keys():
            param_conf, param_data = self.params[param_name]

            confStr = param_conf.SerializeToString()
            tarinfo = tarfile.TarInfo(name="%s.protobuf" % param_name)
            tarinfo.size = len(confStr)
            buf = cStringIO.StringIO(confStr)
            buf.seek(0)
            tar.addfile(tarinfo, fileobj=buf)

            buf = cStringIO.StringIO()
            self.serialize(param_data, buf)
            tarinfo = tarfile.TarInfo(name=param_name)
            buf.seek(0)
            tarinfo.size = len(buf.getvalue())
            tar.addfile(tarinfo, buf)

    @staticmethod
    def serialize(data, f):
        f.write(struct.pack("IIQ", 0, 4, data.size))
        f.write(data.tobytes())


class TFModelConverter(ModelConverter):
    def __init__(self,
                 tf_net,
                 paddle_tar_name,
                 param_name_map=None,
                 layer_name_map=None,
                 layer_type_map=None):
        super(TFModelConverter, self).__init__(paddle_tar_name, param_name_map,
                                               layer_name_map, layer_type_map)
        self.sess = __import__(tf_net).build_model()

    def arrange_layer_params(self):
        all_vars = tf.global_variables()
        layers_params = collections.OrderedDict()
        for var in all_vars:
            var_name = var.name
            scope_pos = var_name.rfind('/')
            if scope_pos != -1:
                layer_scope = var_name[:scope_pos]
                if layers_params.has_key(layer_scope):
                    layer_params, layer_params_names, layer_type = layers_params[
                        layer_scope]
                    layer_params.append(var.eval(self.sess))
                    layer_params_names.append(var_name)
                else:
                    layer_type = re.search('conv|bn|fc', layer_scope)
                    layers_params[layer_scope] = ([var.eval(self.sess)],
                                                  [var_name], layer_type.group()
                                                  if layer_type else None)
        return layers_params

    @wrap_name_default("conv")
    def convert_conv_layer(self, params, params_names=None, name=None):
        for i in range(len(params)):
            data = np.transpose(params[i], (3, 2, 0, 1))
            if len(params) == 2:
                suffix = "0" if i == 0 else "bias"
                file_name = "_%s.w%s" % (name, suffix) if not (
                    params_names and params_names[i]) else params_names[i]
            else:
                file_name = "_%s.w%s" % (name, str(i)) if not (
                    params_names and params_names[i]) else params_names[i]
            param_conf = ParameterConfig()
            param_conf.name = file_name
            dims = list(data.shape)
            if len(dims) == 1:
                dims.insert(1, 1)
                param_conf.dims.extend(dims)
            param_conf.size = reduce(lambda a, b: a * b, data.shape)
            self.params[file_name] = (param_conf, data.flatten())

    @wrap_name_default("fc_layer")
    def convert_fc_layer(self, params, params_names=None, name=None):
        for i in range(len(params)):
            data = params[i]
            if len(params) == 2:
                suffix = "0" if i == 0 else "bias"
                file_name = "_%s.w%s" % (name, suffix) if not (
                    params_names and params_names[i]) else params_names[i]
            else:
                file_name = "_%s.w%s" % (name, str(i)) if not (
                    params_names and params_names[i]) else params_names[i]
            param_conf = ParameterConfig()
            param_conf.name = file_name
            dims = list(data.shape)
            if len(dims) < 2:
                dims.insert(0, 1)
            param_conf.size = reduce(lambda a, b: a * b, dims)
            param_conf.dims.extend(dims)
            self.params[file_name] = (param_conf, data.flatten())
        return name

    @wrap_name_default("batch_norm")
    def convert_bn_layer(self, params, params_names=None, name=None):
        params = [params[i] for i in (0, 2, 3, 1)]
        params_names = [params_names[i]
                        for i in (0, 2, 3, 1)] if params_names else params_names
        for i in range(len(params)):
            data = params[i]
            file_name = "_%s.w%s" % (name, str(i)) if i < 3 else "_%s.w%s" % (
                name, "bias")
            file_name = file_name if not (params_names and
                                          params_names[i]) else params_names[i]
            param_conf = ParameterConfig()
            param_conf.name = file_name
            dims = list(data.shape)
            assert len(dims) == 1
            dims.insert(0, 1)
            param_conf.size = reduce(lambda a, b: a * b, dims)
            param_conf.dims.extend(dims)
            self.params[file_name] = (param_conf, data.flatten())
        return name


if __name__ == "__main__":
    tf_net = "TF_ResNet"
    paddle_tar_name = "Paddle_ResNet50.tar.gz"

    converter = TFModelConverter(tf_net=tf_net, paddle_tar_name=paddle_tar_name)
    converter.convert()